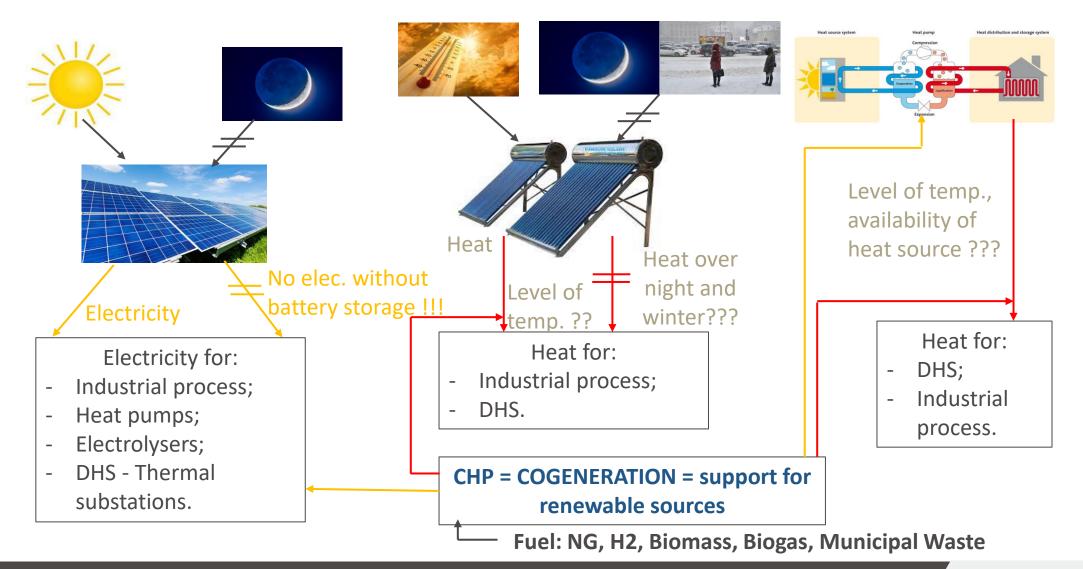
Kawasaki Gas Turbine Europe GmbH

CHP and Combined Cycle-Plants


Two Specialists No Compromise

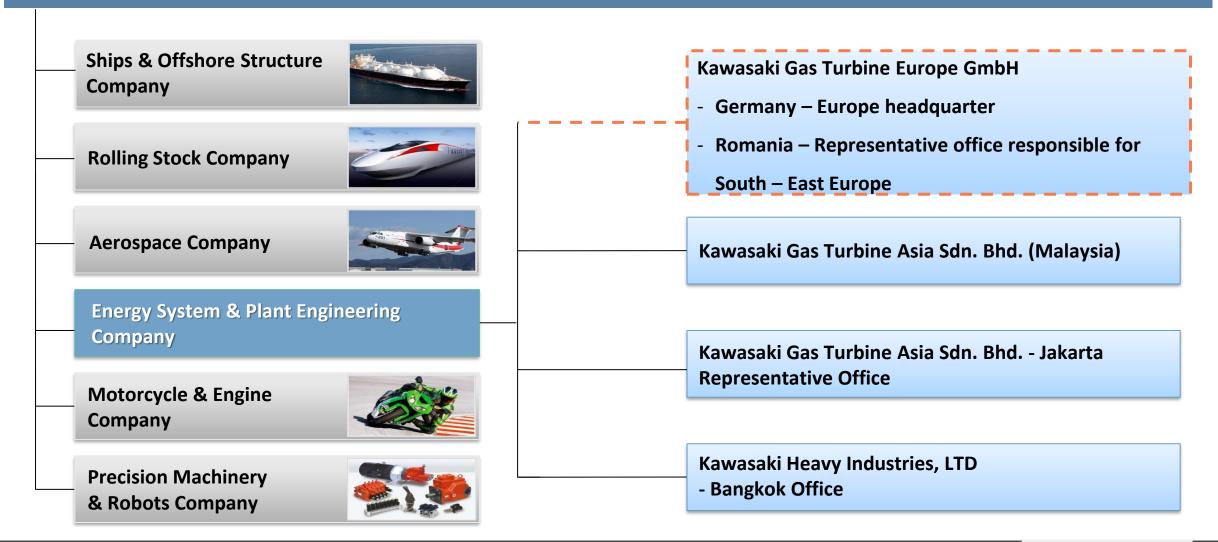
Energynomics 14th Sepetember General Company Presentation

Cogeneration solution = energy efficiency solution = support for renewable energy sources

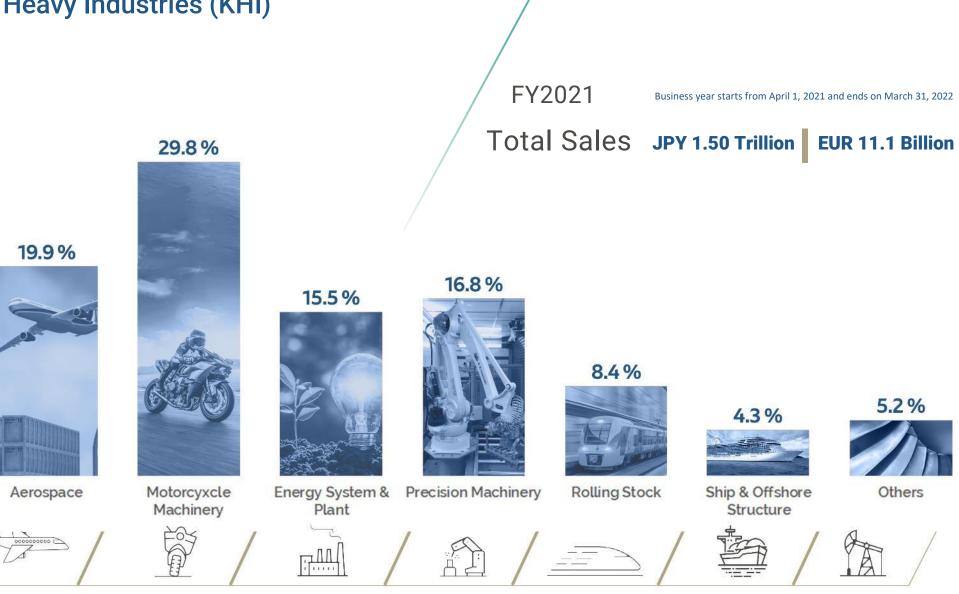
Renewable sources ≠ **Energy efficiency solutions** ≠ **Energy Independence**

Kawasaki

European Union - Energy Approach based on 4D


Energy approach based on 4 pillars = 4D:

- \succ 1st D = Decarbonization;
- \geq 2nd D = Decentralization;
- \rightarrow 3rd D = Digitalization;
- 4th D = Distributed energy generation


Kawasaki Heavy Industries (KHI)

Kawasaki Heavy Industries, Ltd.

Kawasaki

Kawasaki Heavy Industries (KHI)

Working as one for the good of the planet!

Highly Focusing on Environmental Protection and Energy Savings

Global warming gas CO2

Harmful gas NOx, SOx

Energy Saving

Hydrogen – future fuel for energy production

Distributed Generator System

- Provide highly efficient energy use
- > Flexible and reliable to complement unstable renewable energy

Kawasaki Gas Turbine Europe

Products

Gas Turbine Generator Sets

GPB17D GPB50D GPB80D **GPB180D GPB300D** 4,960 kWel 7,8!0 kWel 18,500 kWel 34,300 kWel 1,816 kWel η = 28.1 % n = 32.6 % η = 33.6 % η = 34.3 % n = 40.3 %

Gas Engines

KG12 5,200 kWel n = 49.0 %

@ ISO-conditions

KG18-V 7,800 kWel 7,800 kWel n = 49.0 % n = 49.5 %

KG18-T 7,800 kWel n = 51 %

Services

Engineering

Preliminary Engineering Detailed Engineering

Implementation

Project Planning Customized Packaging Erection Commissioning

Maintenance

Scheduled Maintenance **Trouble Shooting** Spare Parts, Consumables General Overhaul **Remote Monitoring**

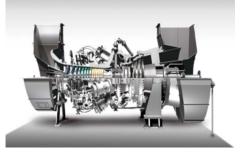
© KAWASAKI Gas Turbine Europe GmbH. All Rights reserved.

KG18

Kawasaki

Gas Turbine Generator Sets

M1A-17D


Power Output [kWe]	1,816
Ele. Efficiency [%]	28.1
Sat. steam 8 barg [t/h] / Heat recovered [kWth]	5 / 3.646
Exhaust Gas Temperature [°C]	522
NO _x @ O ₂ = 15% [ppm]	< 9
CO @ O ₂ = 15% [ppm]	50

M7A-03D

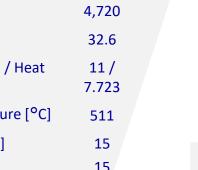
Power Output [kWe]	7,810
Ele. Efficiency [%]	33.6
Sat. steam 8 barg [t/h] / Heat recovered [kWth]	16.4 / 12.471
Exhaust Gas Temperature [°C]	523
NO _x @ O ₂ = 15% [ppm] CO @ O ₂ = 15% [ppm]	< 9 10

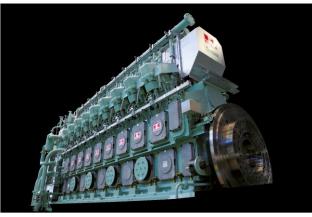
L30A

Kawasaki

Powering your potential

Power Output [kWe]	34,380
Ele. Efficiency [%]	40.3
Sat. steam 8 barg [t/h] / Heat recovered [kWth]	55 / 39.943
Exhaust Gas Temperature [°C]	502
NO _x @ O ₂ = 15% [ppm] CO @ O ₂ = 15% [ppm]	15 / 9 25


M5A-01D


17.	Power Output [kWe] 1					
5	Ele. Efficiency [%]	34.3				
	Sat. steam 8 barg [t/h] / Heat recovered [kWth]	37 / 28.550				
	Exhaust Gas Temperature [°C]	542				
	NO _x @ O ₂ = 15% [ppm] CO @ O ₂ = 15% [ppm]	15 25				

Power Output [kWe]	4,7
Ele. Efficiency [%]	32
Sat. steam 8 barg [t/h] / Heat recovered [kWth]	11 7.72
Exhaust Gas Temperature [°C]	51
NO _x @ O ₂ = 15% [ppm]	15
CO @ O ₂ = 15% [ppm]	15

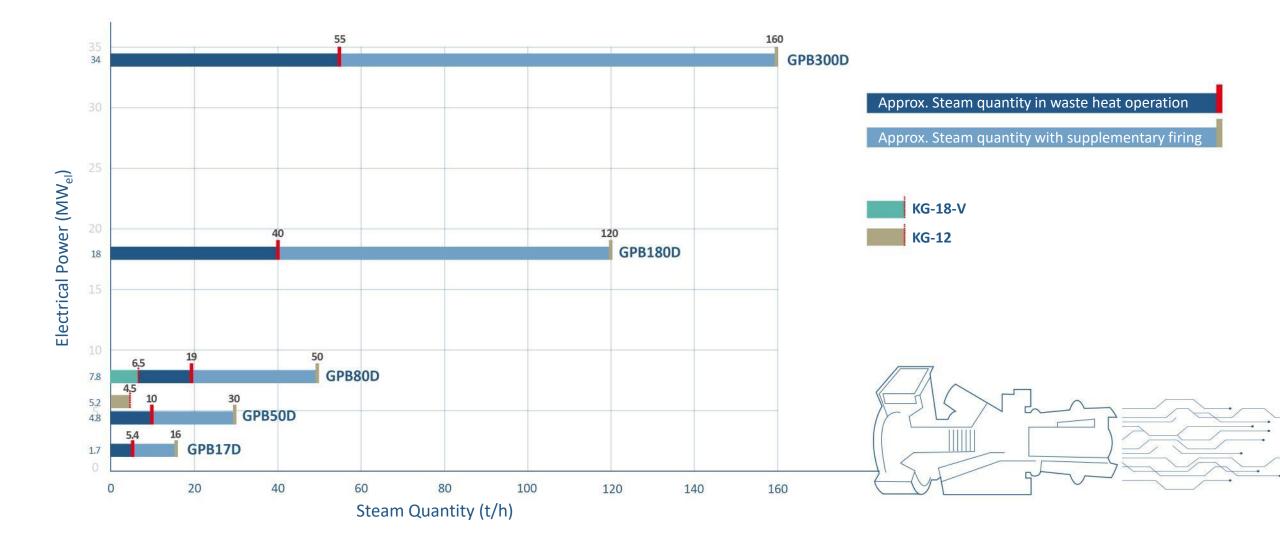
Gas Engine Models

KG 18V

Power Output [kWe]	7,800
Ele. Efficiency [%]	49.5
Total Engine Heat [kWth]	5,000
Exhaust Gas Temperature	[°C] 320
NOx @ O ₂ = 0% [ppm]	200
CO @ O ₂ = 0% [ppm]	50
Methane number	> 65

KG 12

Power Output [kWe]	5,200
Ele. Efficiency [%]	49
Total Engine Heat [kWth]	3,000
Exhaust Gas Temperature [°C]	320
NOx @ O ₂ = 0% [ppm]	200
CO @ O ₂ = 0% [ppm]	50
Methane number	> 65


KG 18T

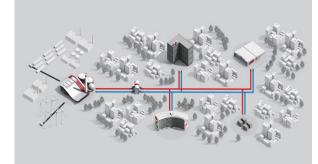
Power Output [kWe]	7,800
Ele. Efficiency [%]	51
Total Engine Heat [kWth]	3,500
Exhaust Gas Temperature [°C]	285
NOx @ O ₂ = 0% [ppm] CO @ O ₂ = 0% [ppm]	250
Methane number	> 65

Performance in CHP

Kawasaki

KGE market – request of electricity and steam / hot water / child water / CO₂

Pulp and paper


Food and Beverage

Medicines / cosmetics

District Heating

UniversitiesHospitalsHotelsAirports

Refinery / Chemistry

Ceramics

Automotive / Tires

Fertilizers

Kawasaki Heavy Industries

Hydrogen Road

H2-Production and Liquefaction

H2-Storage Tanks

H2-Oversea Transportation H2-Land Transportation

H2-Gas Turbines H2-Compressors

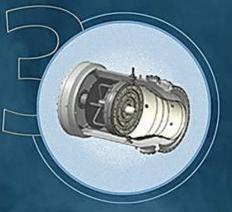
Hydrogen Technology for Gas Turbines (кні)

Overview of Combustor Developments

Combustor Configuration:

- NOx ReductionH2 Content
- Status

DLE for Natural Gas


"Dry"

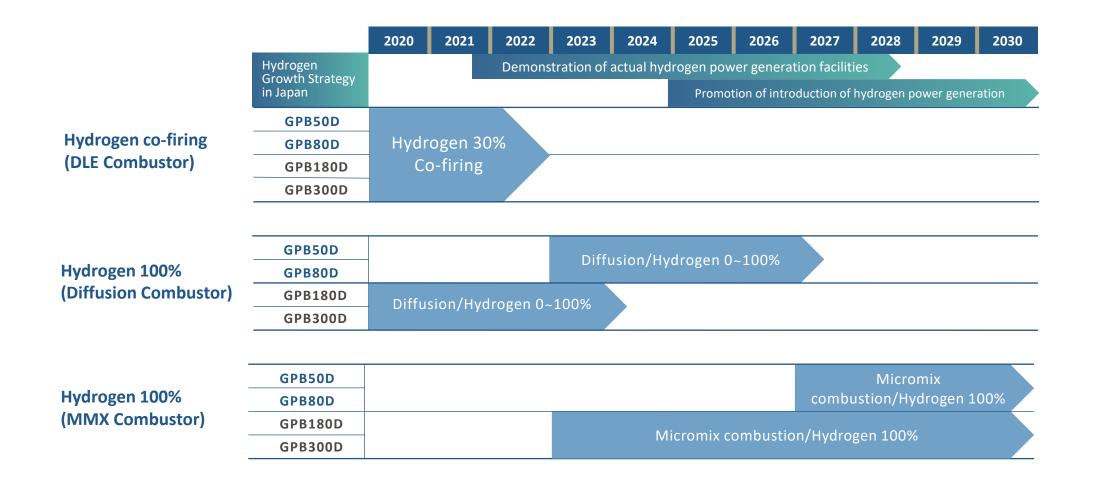
0 ... 30 vol%

Demonstration at

Akashi Works, 2014

Diffusion Flame

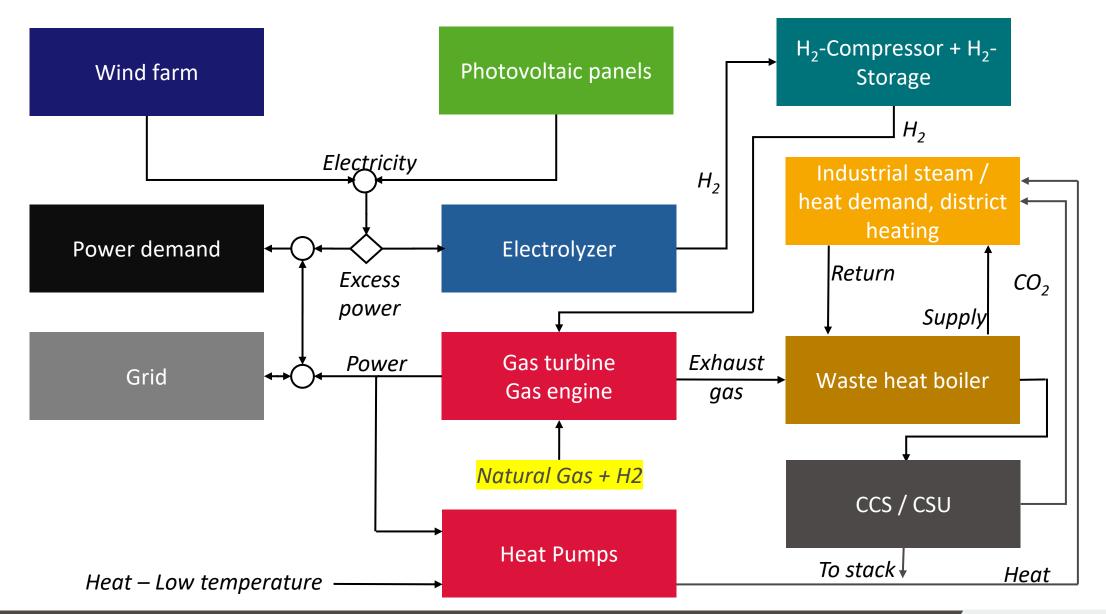
"Wet" Water/Steam 0 ... 100 vol%


Applied to KOBE Demonstration Plant, 2018 **DLE Micro-Mix**

"Dry" 90 ... 100 vol%

Applied to KOBE Demonstration Plant, 2020

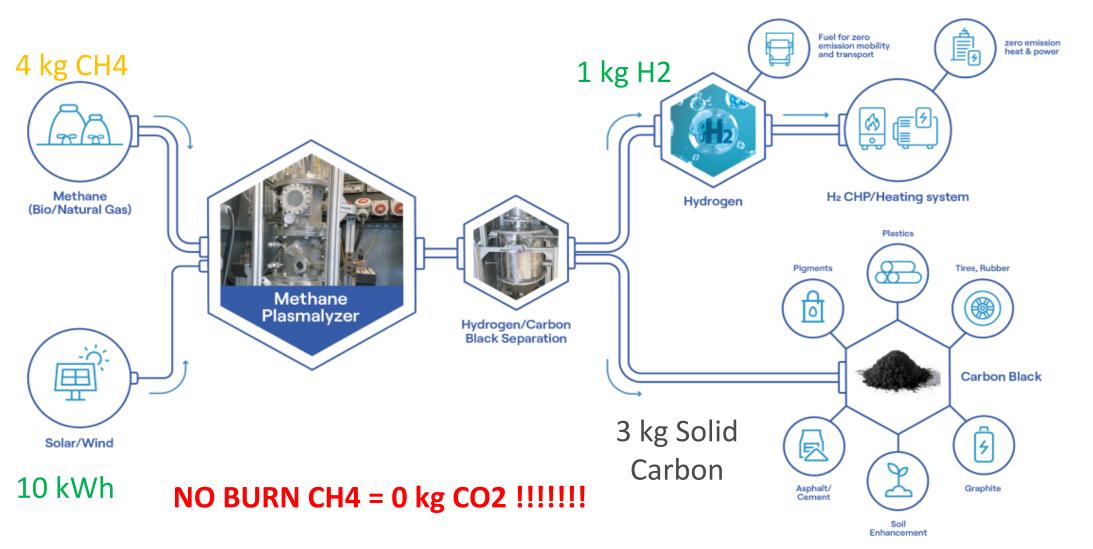
Road Map of Hydrogen Gas Turbine Development (кні)



GT's fuel consumption for 30% Hydrogen

	Gen.	Gen.		Fuel Consumption 1		Fuel Consumption 2		
GT Type Output		Fuel Consumption		NG		30% H2		
	kWe	kW	m3/h	kW	m3/h	kW	m3/h	kg/h
GPB 17D	1820	6478	803.76	5765	566.65	713	237.11	21.34
GPB 50D	4890	13040	1675.53	11360	1116.506	1680	559.02	50.31
GPB 80D	7820	23320	2893.44	20755	2039.86	2565	853.57	76.82
GPB 180D	18340	53080	6585.92	47241	4643.05	5839	1942.87	174.86
GPB 300D	33700	83020	10300.74	73888	7261.99	9132	3038.75	273.49

Hybrid Plants – Common Concept based on RES



Green H2 production solutions

- "Classic solution" water electrolysis
 For 1 kg H2 are necessary:
 60 kWh electricity from PV / Wind farm
 +
 9 kg water
- 2. Methane Plasmalyser methane electrolysis For 1 kg H2 are necessary: 10 kWh electricity from PV / Wind farm + 4 kg CH4

How is running: high frequency voltage field generated from PV / wind farm split into its molecular H2 and C.

Methane Electrolysis concept

NO WATER NEEDED + LOW ELECTRICITY CONSUMPTION THAN CLASSIC SOLUTION !!!!!!!

Zero Carbon COGENERATION Solution by Graforce GmbH & Kawasaki Gas Turbine Europe GmbH

Methane Plasmalyser + Kawasaki Gas Turbines =

Business case which can be realised already today!?

"Global Kawasaki"

