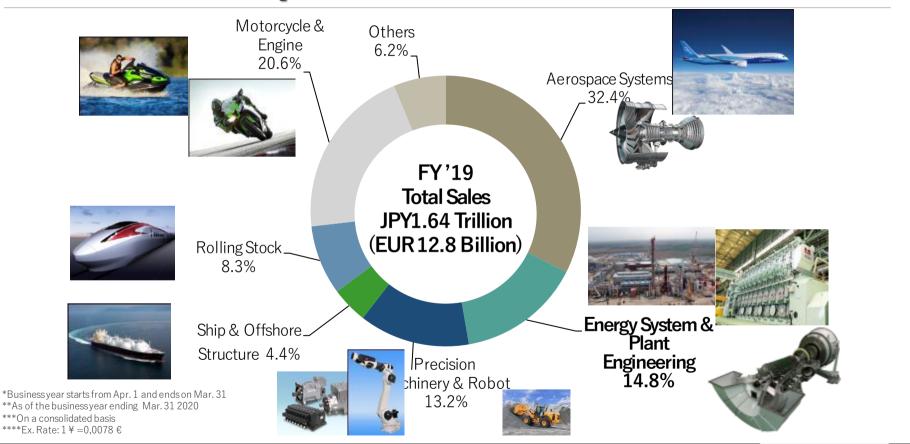
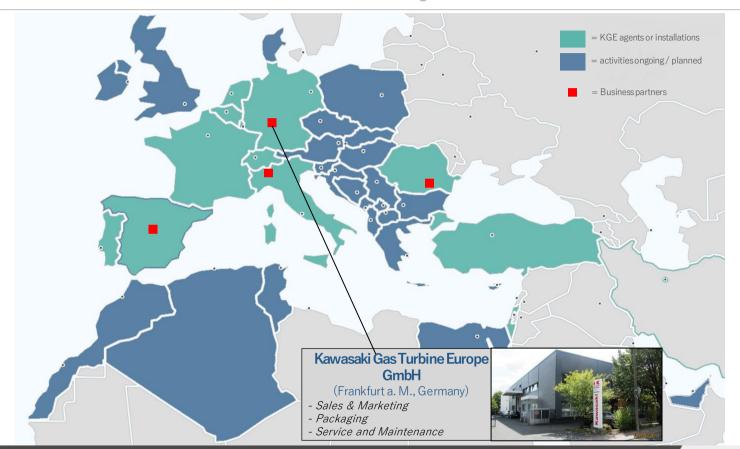
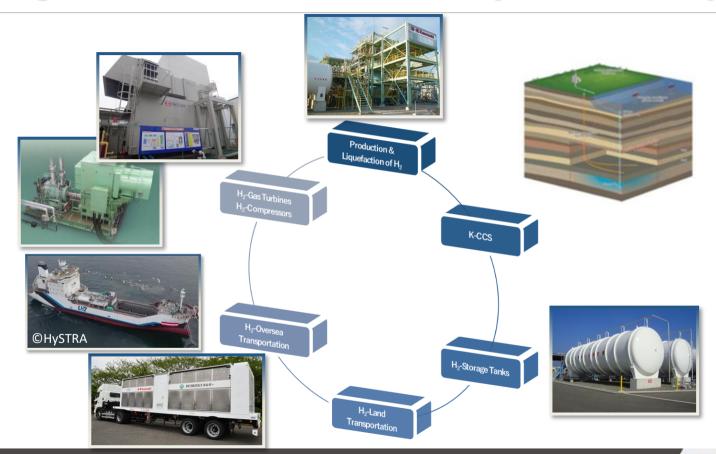
Hydrogen Energy Supply Chain for Decarbonization KAWASAKI HYDROGEN ROAD


Development of Innovative Hydrogen Technologies for Future Hydrogen Society

Company name, Location Date


Shahrad Adjili Head of Sales Europe

Kawasaki Heavy Industries - Sections


Kawasaki Gas Turbine Europe

Kawasaki Products & Services

Kawasaki Gas Turbine Europe							
Products		Services					
Gas Turbines	Gas Engines	Engineering	Implementation	Maintenance			
M1A-17D 1,800 kWel η = 28.1 %	KG12 5,200 kWel η = 49.0 %	Preliminary Engineering	Project Planning	Custommers support			
M5A-01D 4,700 kWel η = 32.6 %	KG12-V 5,200 kWel η = 49.5 %	Detailed Engineering	Customized Packaging	Spare Parts & Comsumables			
NJ7/A-031D 7,800 kWel η = 33.6 %	KC13 7,800 kWeI η = 49.0 %		Erection Commissioning	General Overhaul			
L20/Δ-01 D 18,500 kWel η = 34.3 %	KG18-V 7,800 kWel η = 49.5 %			Remote Monitoring			
L30A-01D 34,300 kWel η = 40,3 %	KG18-T 7,800 kWel η = 51, 0 %						

Hydrogen Road of Kawasaki Heavy Industries (KHI)

Liquefied Hydrogen Carrier "Suiso Frontier"

Journey for commercialization

2020 Pilot Demo Mid 2020s
Commercial Demo

2030 Full Commercial

1,250m3 Ship x1

160,000m³ Ship x2
Commercial Supply chain

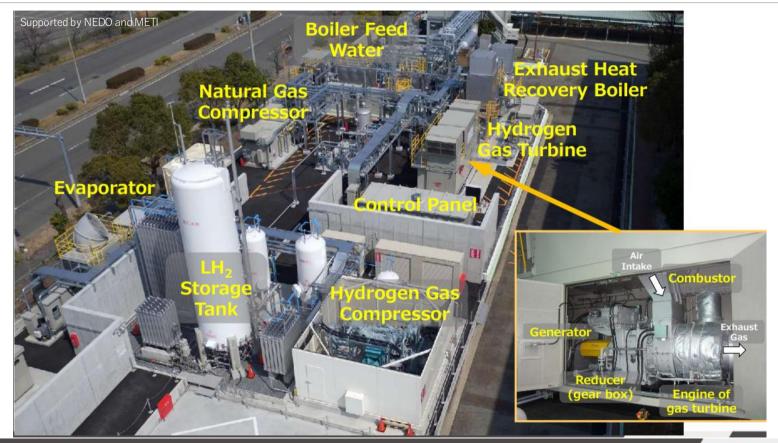
Commercial scale
Technology confirmation

Technical & social demonstration

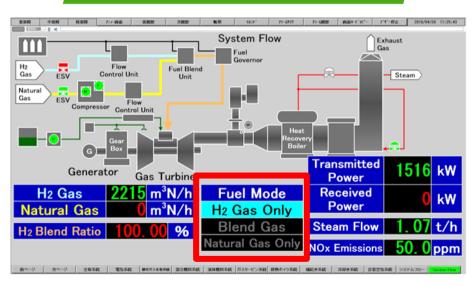
Liquefied Hydrogen Carrier "Suiso Frontier"

Launch ceremony (11 December 2019) at KHI Kobe Shipyard

Cargo Tank Installation (7 March 2020) at KHI Harima Works



LH2 Receiving Terminal construction completed



World's First 100% H2-CHP Plant at Kobe Port

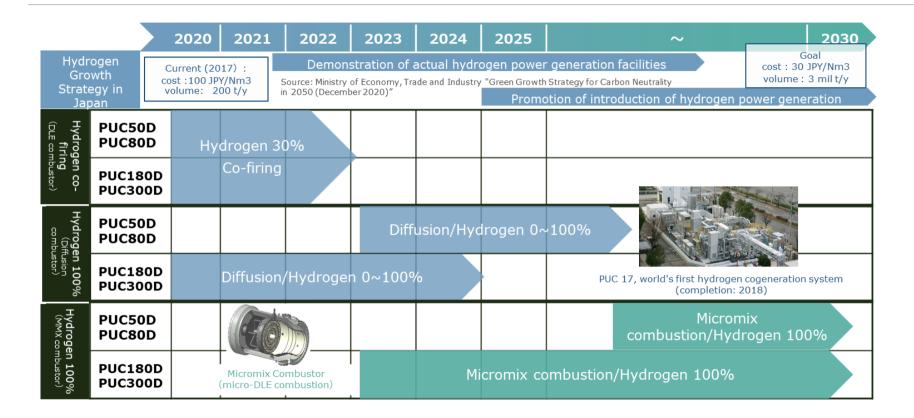
World's First H2-Power Plant at Kobe Port

User Control Interface

Comparison between NG & H₂

Gas Turbine Type	M1A-17	M1A-17			
Fuel type		Natural Gas	Hydrogen		
Electrical power		1,848	1,902		
Fuel input		6,845	6,907		
Efficiency		27.0	27.5		
Exhaust gas mass flow		7.98	7.89		
Exhaust gas temperature		529	528		
Generator voltage		0.4 / 6.3 / 10.5	0.4 / 6.3 / 10.5		
Steam mass flow 8 bar(g) saturated		5.2	5.2		
NOx Reduction method		Water injection	Water injection	on	
Emissions (NOx)	ppm	37	73		
Emissions (CO2)	%	3	0.0		
Performance at 15 C, 60% ਲਜ, at Generator Terminal, Inlet Pressure Loss 0,98 kPa, Exhaust Pressure Loss 2,45 kPa					

Supported by NEDO and METI

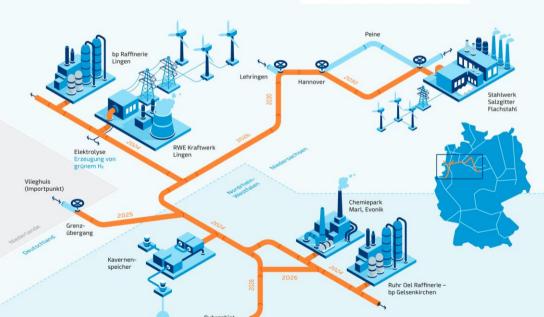

Developments for Hydrogen Gas Turbines @ KHI

Overview of Combustor Developments

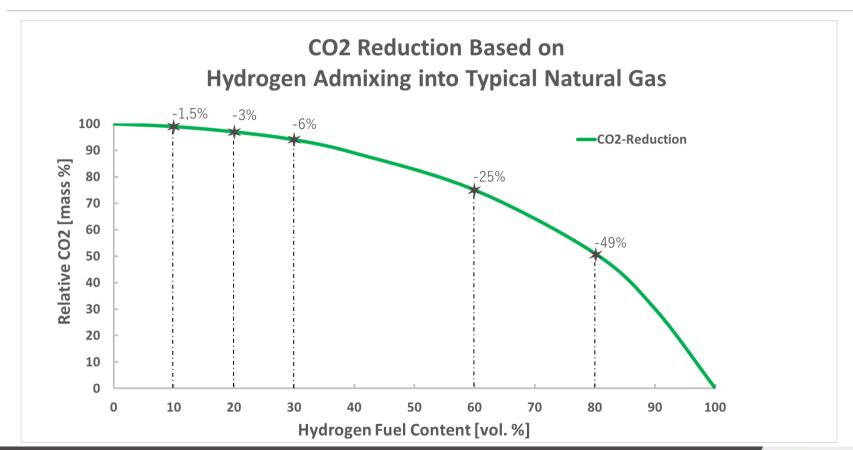
Combustor Configuration	DLECombustor for Natural Gas	Diffusion Flame Combustor	DLEMicro-Mix Combustor
NOx Reduction	"Dry"	"Wet" Water/Steam	"Dry"
	0-100% H ₂	2	Development 3
Max. H2 Content	60vol%	100vol%	100vol%
Status	Engine Demonstration in Akashi Works, 2014	Final Combustor Test, 2016 Applied to KOBE Demonstration Plant, 2018	Final Combustor Test, 2018 Applied to KOBE Demonstration Plant, 2020 Supported by NEDO and METI

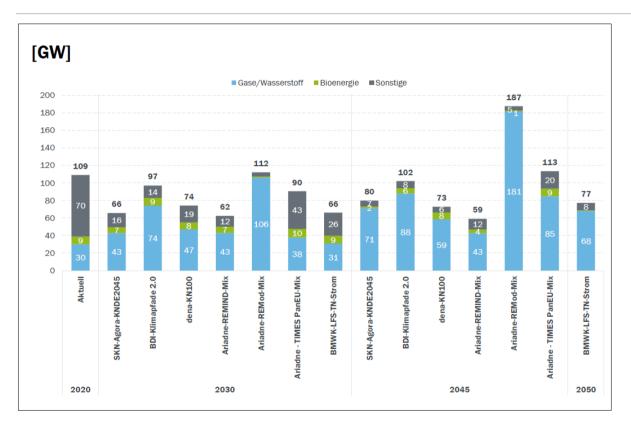
Main Difference between NG & H2 Gas Turbines is the Combustor

Hydrogen Capability of Gas Turbines @ KHI


Joint undertaking of Kawasaki & RWE

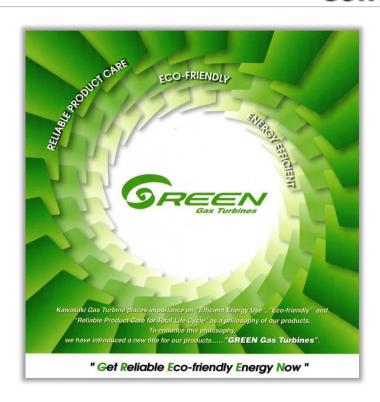
RWE and Kawasaki plan to build one of the world's first 100% hydrogen-capable gas turbines on




- · From 2024 onwards 34 megawatt plant could reconvert green hydrogen to power
- · In future, H2-fuelled power plants will contribute significantly to green security of supply

Impact of Hydrogen Admixing on CO2 Reduction

Installed capacity of power plants - scenarios


Installed capacity gas/H2 power plants

- All scenarios show an increase in installed capacity of gas-fired power plants until 2030
- The range is very wide, from 31 GW to 106 GW in 2030
- ✓ GREEN Environmentally Friendly
 Technology for Industrial Applications by
 De-Carbonization of the Energy
 Production
- ✓ World's 1st Hydrogen Dry Low NOx Emission (DLE) System
- ✓ 0-100% Hydrogen Gas Turbine Technology are Already Available
- Provides Highest Fuel Flexibility, Blend NG/H2 Gas
- √ Highest Efficiencies
- ✓ Lowest No_x-Emission

Why Hydrogen Technology of Kawasaki

- ✓ World's 1st Combined Heat and Power with Hydrogen
- ✓ GREEN Environmentally Friendly Technology for Industrial Applications by De-Carbonization of the Energy Production
- ✓ World's 1st Hydrogen Dry Low NOx Emission (DLE) System
- √ 0-100% Hydrogen Gas Turbine Technology is Already Available
- ✓ Provides Highest Fuel Flexibility, Blend NG/H2 Gas
- ✓ Highest Efficiencies
- ✓ Lowest NO_x-Emission

KAWASAKI Gas Turbine Europe – Contact details

KAWASAKI Gas Turbine Europe GmbH Nehringstrasse 15 D-61352 Bad Homburg / Germany

+49 (0) 6172 7363-0 Fax +49 (0) 6172 7363-55 www.kawasaki-gasturbine.de info@kge-gmbh.com

Head of Sales

Shahrad Adjili +49 (0) 6172 7363 - 21 adjili@kge-gmbh.com

Area Sales Manager

Oliver Fisenblätter

+49 (0) 6172 7363 - 16 eisenblaetter@kge-gmbh.com

Area Sales Manager

Mohsen Tavangar

(+49 (0) 6172 7363 – 27

m.tavangar@kge-gmbh.com

Hydrogen Product Manager

Dr. Nurettin Tekin

+49 (0) 6172 7363 - 81 n.tekin@kge-gmbh.com

Area Sales Manager

Martin Birkner

(4) +49 (0) 6172 7363 - 25 birkner@kge-gmbh.com

Italy - Business Development Agent

Mercurio Group

(+39 0323060032

faretta.a@mercurio-group.com

Spain - Business Development Agent

SOLJET Energia

+34 914587732

soljet@soljet.com

"Global Kawasaki"