Two Specialists

No Compromise

KAWASAKI Gas Turbine Europe GmbH

Energynomics – 26th November 2020,

"Decarbozation of the national energy sector – challenges and solutions" conference

© KAWASAKI Gas Turbine Europe GmbH. All Rights reserved.

Developments for Hydrogen Gas Turbines @ KHI

2

Kawasaki Heavy Industries – Sections

Kawasaki Heavy Industries, Ltd.

Kawasak

Kawasaki Gas Turbine Europe (KGE) – History

1975 License Agreement with Deutz AG

- Deutz, Cologne starts the Sales and Service of the M1A Gas Turbine
- MWM Diesel & Gastechnik, Mannheim takes over the business from Deutz

1998 Establishment of KAWASAKI Gas Turbine Europe GmbH

- Headquarter for the entire European Market
- Sales, Packaging and Service of Gas Turbine Generator Sets
- 10 Employees

2003 Expansion of Production Facilities

- Relocation to Bad Homburg (close to Frankfurt City)
- Establishment of the Production Site and Service Centre Europe
- Start of in-house packaging of GPB17D
- 25 Employees

2013 Introduction of the Gas Engines into the product portfolio

- Start of Promotion and Sales of KG-12/V and KG-18/V
- 40 Employees

2018 Establishment of Romanian Office in Bucharest

- Promotion & Sales Activities started, responsible for South-East Europe
- Currently: 67 Employees

KGE's Take

Working as one for the good of the planet!

Kawasaki

KGE cogeneration market – request of electricity and steam / hot water

Typical applications:

Pulp and paper

Food and Beverage

Medicines / cosmetics

Automotive / Tires

Refinery / Chemistry

District Heating

🕊 Kawasaki

Kawasaki Gas Turbine Generator Sets

M1A-17D

Power Output [kWe]	1,816
Ele. Efficiency [%]	28.1
Sat. steam 8 barg [t/h]	5
Exhaust Gas Temperature [°C]	522
NO _x @ O ₂ = 15% [ppm] CO @ O ₂ = 15% [ppm]	< 9 50

M7A-03D

Power Output [kWe]	7,810
Ele. Efficiency [%]	33.6
Sat. steam 8 barg [t/h]	16.4
Exhaust Gas Temperature [°C]	523
NO _x @ O ₂ = 15% [ppm]	< 9
CO @ O ₂ = 15% [ppm]	10

Power Output [kWe]	4,720
Ele. Efficiency [%]	32.6
Sat. steam 8 barg [t/h]	11
Exhaust Gas Temperature [°C]	511
$NO_x @ O_2 = 15\% [ppm]$	15
CO @ O ₂ = 15% [ppm]	15

M5A-01D

Power Output [kWe]	18,500
Ele. Efficiency [%]	34.3
Sat. steam 8 barg [t/h]	37
Exhaust Gas Temperature [°C]	542
NO _x @ O ₂ = 15% [ppm] CO @ O ₂ = 15% [ppm]	15 25

L30A

Power Output [kWe]	34,380
Ele. Efficiency [%]	40.3
Sat. steam 8 barg [t/h]	55
Exhaust Gas Temperature [°C]	502
NO _x @ O ₂ = 15% [ppm] CO @ O ₂ = 15% [ppm]	15 / 9 25

7

M5A-01D. Highest power generating efficiency in the 5 MW class

On 7th August, 2020 Kawasaki Heavy Industries, Ltd. has received the Best Paper Award for its academic paper, presented at ASME Turbo Expo 2019 organized by the International Gas Turbine Institute (IGTI) of the American Society of Mechanical Engineers (ASME).

Its title is "Development of High Efficiency 5MW Class Gas Turbine the Kawasaki M5A".

M5A-01D

The award-winning paper covers the development of the M5A, a domestically produced gas turbine launched in November 2017, which boasts the world's highest power generating efficiency in the 5 MW class.

- 32.6% generating efficiency, the world's highest among 5 MW models
- 84.5% combined energy efficiency the highest in its class.

Kawasaki Gas Engine Models

KG 18V

Power Output [kWe]	7,800
Ele. Efficiency [%]	49.5
Exhaust Heat [kWth]	4,000
Exhaust Gas Temperature [°C]	320
NOx @ O ₂ = 0% [ppm] CO @ O ₂ = 0% [ppm]	200 50
Methane number	> 65

KG 12V

Power Output [kWe]	5,200
Ele. Efficiency [%]	49.5
Exhaust Heat [kWth]	2,700
Exhaust Gas Temperature [°C]	320
NOx @ O ₂ = 0% [ppm] CO @ O ₂ = 0% [ppm]	200 50
Methane number	> 65

Power Output [kWe]	7,800
Ele. Efficiency [%]	51
Exhaust Heat [kWth]	
Exhaust Gas Temperature [°C]	
NOx @ O ₂ = 0% [ppm] CO @ O ₂ = 0% [ppm]	250
Methane number	> 65

9

KHI - first in-house-developed 107 MW class CCPP

17th September, 2020 — KHI Ltd. announced the completion for Kashima South Joint Power Corporation (Kamisu City, Ibaraki Prefecture) of 107 MW CCPP.

The plant include a cogeneration facility supplying electricity and steam according to demand from surrounding factories.

Joetsu Green Power Project for Nihon Techno / J

100 MW CCPP (standard solution)

Combined Cycle Performance Data (Reference)			
	1 on 1	2 on 1	2 on 1 (Reheat)
CC Electric Output [MW]	44.7	89.9	101.5
CC Heat Rate [kJ/kW-hr]	6,650	6,620	6,520
CC Electrical Efficiency [%]	54.1	54.4	55.2
Number of Gas Turbines	1	2	2
Condition:Inlet Air Temperature:15 deg-CAtmospheric Pressure:101.3 kPaFuel Type:Natural Gas (100% CH_4)35.9LHV of Fuel:35.9			

Colors of Hydrogen

	Source	Technology	
Green Hydrogen	Renewable Energy	Electrolyze	Zero CO ₂
Turquoise	Natural Gas	Pyrolysis	Solid Carbon
Blue Hydrogen (with CCS)	Natural Gas, Coal, other Fossils	Thermochemical conversion - Steam Metane Reformer - Gasification	+ CO ₂
Grey Hydrogen (without CCS)	Natural Gas, Coal, other Fossils	Thermochemical conversion - Steam Reformer - Gasification	+++ CO ₂

H_2 - Quality

H₂ by NG-Steam - Reformer p=2.5MPa, T=900C

- 1. $CH_4+H_2O\leftrightarrow CO+3H_2$ (steam injection)
- 2. $CO+H_2O\leftrightarrow CO_2+H_2$ (shift reaction)

 H_2 Quality:

Chlor-Alkali Elektrolyse	99,97%
$(2NaCl+2H_2O => 2NaOH+Cl_2+H2)$	
Ethylene	96 - 98%
Cracking	min. 90%

< 20 ppm CO Quality of H₂: 5.0 (99.999%)

Electrolyzer Quality of H₂: 5.0 (99.999%)

source: Air Liquide (2009)

H₂ - Facility

worldwide 12 Air Liquide H2-pipelines (1800km)

🛛 🕊 Kawasaki

Overview of worldwide H2-pipelines

	USA 2,608 km
Belgium 613 km	
Germany 376 km	
France 303 km	-
Netherlands 237 km	$\overline{\mathbf{b}}$
Canada 147 km	
Others 258 km	HyARC 2017; own diagram
	source: Shell Study

© 2019 Kawasaki Gas Turbine Europe GmbH. All Rights Reserved.

Kawasaki Hydrogen Road Map

Development of Smart Community Technology by Utilization of Cogeneration System with Hydrogen Gas Turbine

KOBE city

Kawasaki Hydrogen Road Map

The first attempt in the world to supply electric power and heat generated from hydrogen gas turbine to an actual urban area

Kawasaki

World's First H₂-Cogeneration Plant at Kobe Port

🕂 Kawasaki

Kawasaki Hydrogen Road Map

Gas Turbine CHP Plant using 100% Hydrogen as a fuel

Power Generation: 1.7 MWe

- Obayashi
- Kawasaki
- Kobe City
- KEPCO
- Iwatani
- Osaka University

Supported by NEDO

Development of Hydrogen Gas Turbines @ KHI

Overview of Combustor Developments

Combustor Configuration	DLE Combustor for Natural Gas	Diffusion Flame Combustor	DLE Micro-Mix Combustor
NOx Reduction	"Dry"	"Wet" Water/Steam	"Dry" Latest
			3
Max. H2 Content	60vol%	100vol%	100vol%
	In operation @ Akashi Works	Final Combustor Test, 2016 Applied to KOBE	Combustor under development
Status		Demonstration Plant, 2018	

🛛 🕊 Kawasaki

Development of Hydrogen Gas Turbines @ KHI

Today situation

- ➢ GPB 17D − 100% H2, diffusion mode
- ➢ GPB 50D − 10% H2, DLE mode
- ➢ GPB 80D − 10% H2, DLE mode
- ➢ GPB 180D − 10% H2, DLE mode
- ➢ GPB 300D − 10% H2, DLE mode

Short and medium term

- ➢ GPB 17D − 100% H2, DLE mode
- ➢ GPB 50D − 30% H2, DLE mode
- ➢ GPB 80D − 30% H2, DLE mode
- ➢ GPB 180D − 30% H2, DLE mode
- GPB 300D 100% H2, diffusion mode
 and 30% DLE mode

Future Cogeneration Plants

23

🛛 🕊 Kawasaki

Kawasaki will pursue "manufacturing that makes the Earth smile."

"Global Kawasaki"

