
Two Specialists

No Compromise

KAWASAKI Gas Turbine Europe GmbH

CHP and Combined Cycle-Plants

General Company Presentation

Agenda

1

Kawasaki Heavy Industries (KHI)

2

Kawasaki Gas Turbine Europe (KGE)

3

Kawasaki Products & Services

4

Developments for Hydrogen Gas Turbines @ KHI

Kawasaki Heavy Industries – Sections

Kawasaki Heavy Industries, Ltd.

Ships & Offshore Structure Company

Rolling Stock Company

Aerospace Company

Energy System & Plant Engineering Company

Motorcycle & Engine Company

Precision Machinery Company

Kawasaki Gas Turbine Europe GmbH

- Germany Europe headquarter
- Romania Representative office responsible for South East Europe

Kawasaki Gas Turbine Asia Sdn. Bhd. (Malaysia)

Kawasaki Gas Turbine Asia Sdn. Bhd.

- Jakarta Representative Office

Kawasaki Heavy Industries, LTD - Bangkok Office

Kawasaki Gas Turbine Europe (KGE) – History

1975 License Agreement with Deutz AG

- Deutz, Cologne starts the Sales and Service of the M1A Gas Turbine
- MWM Diesel & Gastechnik, Mannheim takes over the business from Deutz

1998 Establishment of KAWASAKI Gas Turbine Europe GmbH

- Headquarter for the entire European Market
- Sales, Packaging and Service of Gas Turbine Generator Sets
- 10 Employees

2003 Expansion of Production Facilities

- Relocation to Bad Homburg (close to Frankfurt City)
- Establishment of the Production Site and Service Centre Europe
- Start of in-house packaging of GPB17D
- 25 Employees

2013 Introduction of the Gas Engines into the product portfolio

- Start of Promotion and Sales of KG-12/V and KG-18/V
- 40 Employees

2018 Establishment of Romanian Office in Bucharest

- Promotion & Sales Activities started, responsible for South-East Europe
- Currently: 67 Employees

KGE's Take

Working as one for the good of the planet!

Highly Focusing on Environmental Protection and Energy Savings

- Reduction of emissions
 - Global warming gas CO₂
 - ❖ Harmful gas NO_x, SO_x
- Energy Saving

Renewable energy

Distributed Generator System

- Provide highly efficient energy use
- Flexible and reliable to complement unstable renewable energy

KGE cogeneration market

Industry

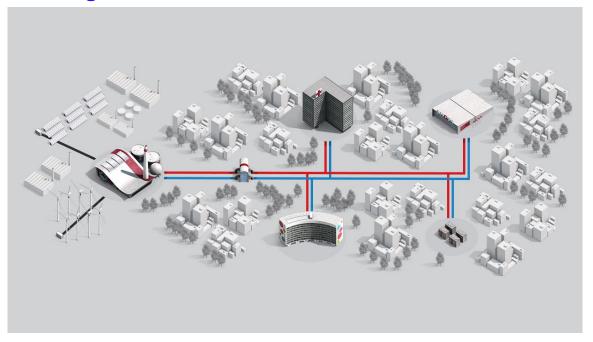
Pulp and paper

Medicines and cosmetics

Refinery / Chemistry

Food and beverages industry

Automotive and tyres


Ceramics

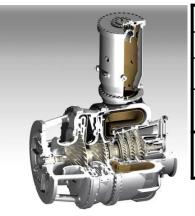
KGE cogeneration market

Potential clients of cogeneration

District Heating

Services with own small cogeneration unit:

Universitary campus


Hospitals

Hotels

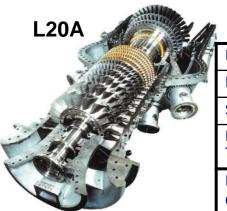
Airports

Kawasaki Gas Turbine Engine Models

M1A-17D

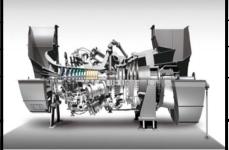
Power Output [kWe]	1,816
Ele. Efficiency [%]	28.1
Sat. steam 8 barg [t/h]	5
Exhaust Gas Temperature [°C]	522
$NO_x @ O_2 = 15\% [ppm]$ CO @ $O_2 = 15\% [ppm]$	< 9 50

M7A-03D

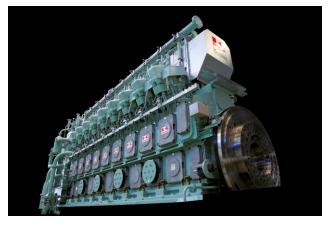


Power Output [kWe]	7,810
Ele. Efficiency [%]	33.6
Sat. steam 8 barg [t/h]	16.4
Exhaust Gas Temperature [°C]	523
$NO_x @ O_2 = 15\% [ppm]$ $CO @ O_2 = 15\% [ppm]$	< 9 10

Power Output [kWe]	4,720
Ele. Efficiency [%]	32.6
Sat. steam 8 barg [t/h]	11
Exhaust Gas Temperature [°C]	511
$NO_x @ O_2 = 15\% [ppm]$ $CO @ O_2 = 15\% [ppm]$	15 15


M5A-01D

Power Output [kWe]	18,500
Ele. Efficiency [%]	34.3
Sat. steam 8 barg [t/h]	37
Exhaust Gas Temperature [°C]	542
NO _x @ O ₂ = 15% [ppm] CO @ O ₂ = 15% [ppm]	15 25


L₃₀A

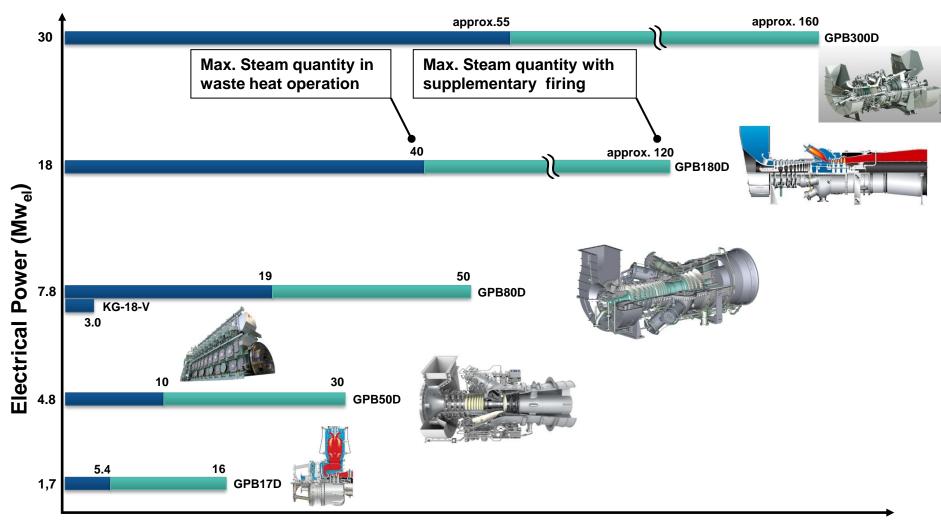
Power Output [kWe]	34,380
Ele. Efficiency [%]	40.3
Sat. steam 8 barg [t/h]	55
Exhaust Gas Temperature [°C]	502
$NO_x @ O_2 = 15\% [ppm]$ CO @ $O_2 = 15\% [ppm]$	15 / 9 25

Kawasaki Gas Engine Models

KG 18V

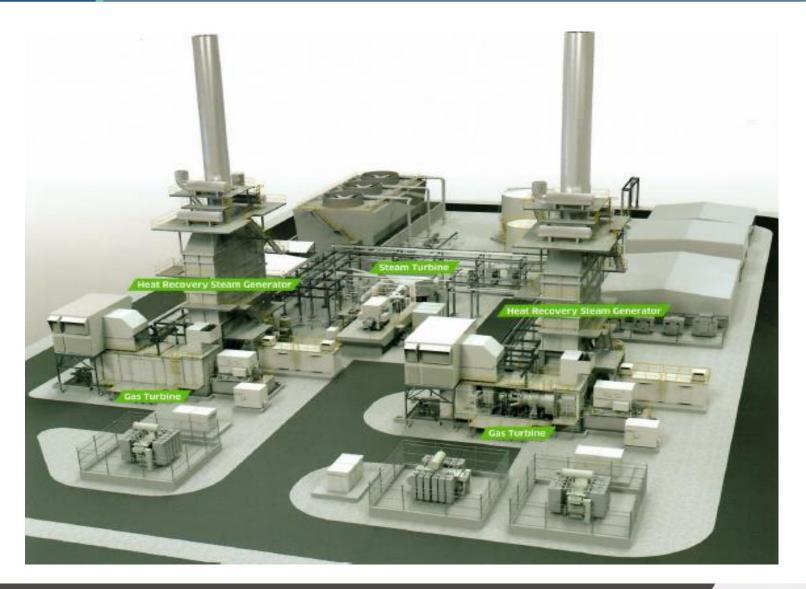
KG 12V

KG 18T



Power Output [kWe]	7,800
Ele. Efficiency [%]	49.5
Exhaust Heat [kWth]	4,000
Exhaust Gas Temperature [°C]	320
NOx @ $O_2 = 0\%$ [ppm]	200
$CO @ O_2 = 0\% [ppm]$	50
Methane number	> 65

Power Output [kWe]	5,200
Ele. Efficiency [%]	49.5
Exhaust Heat [kWth]	2,700
Exhaust Gas Temperature [°C]	320
NOx @ $O_2 = 0\%$ [ppm] CO @ $O_2 = 0\%$ [ppm]	200 50
Methane number	> 65


Power Output [kWe]	7,800
Ele. Efficiency [%]	51
Exhaust Heat [kWth]	
Exhaust Gas Temperature [°C]	
NOx @ $O_2 = 0\%$ [ppm] CO @ $O_2 = 0\%$ [ppm]	250
Methane number	> 65

Performances in CHP

Steam Quantity (t/h)

Kawasaki Gas Turbine (KHI) – 100 MW CCPP (combined cycle power plant)

Kawasaki Gas Turbine (KHI) - 100 MW CCPP (combined cycle power plant) - performances

Combined Cycle Performance Data (Reference)

	1 on 1	2 on 1	2 on 1 (Reheat)
CC Electric Output [MWe]	44.7	89.9	101.5
CC Heat Rate [kJ/kW-hr]	6,650	6,620	6,520
CC Electrical Efficiency [%]	54.1	54.4	55.2
Number of Gas Turbines	1	2	2
Bottoming Cycle Type	2PNRH	2PNRH	3PRH

Condition

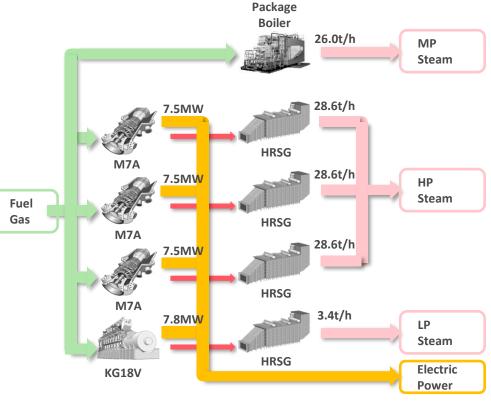
Inlet Air Temperature : 15 deg-C Atmospheric Pressure : 101.3 kPa

Fuel Type : Natural Gas (100% CH.)

LHV of Fuel : 35.9 MJ/Nm^T

2PNRH : Two Pressure Non-reheat 3PRH : Three Pressure Reheat

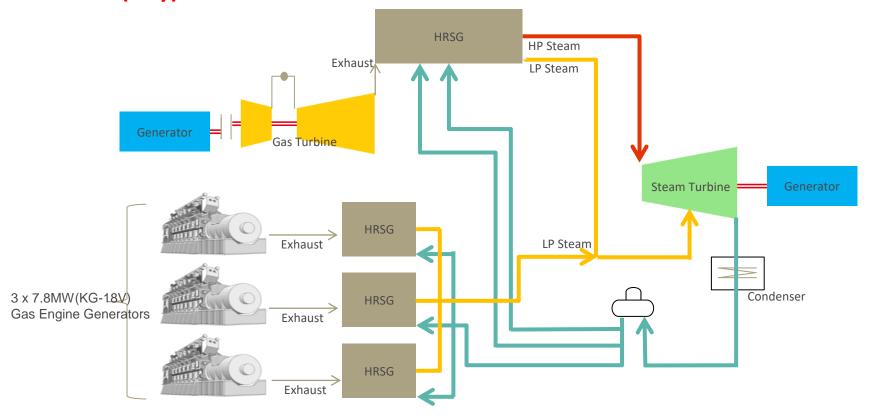
Joetsu Green Power Project for Nihon Techno / J



Hybrid CHP for Chemical Industries (JPN)

Example of installation GPB80 GT and KG-18 GGE, Japan

CHP Package	GPB80D +Gas Engine
Output	M7A(7.5MW) x 3 units KG-18-V(7.8MW) x 1 unit 26t/h Package Boiler



LP : Low Pressure MP : Medium Pressure

Hybrid CHP for Industrial Park (THA)

Optimal Configuration for load alteration (Peak/Off-peak)
By Hybrid Combined Cycle (Gas Turbine & Gas Engines + Steam Turbine)

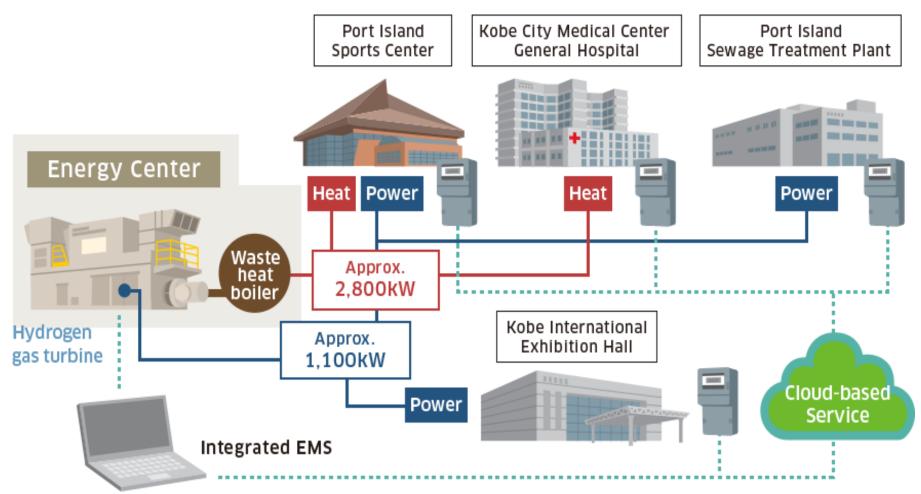
~Peak (Day) Time~

Hybrid CHP Reference for Industrial Park (THA)

Optimal Configuration for load alteration (Peak/Off-peak)
By Hybrid Combined Cycle (Gas Turbine & Gas Engines + Steam Turbine)

~Off-Peak (Night) Time~ **HRSG HP Steam** Exhaust LP Steam Steam Turbine 3 x 7.8MW(KG-18V) Condenser Gas Engine Generators

Kawasaki Hydrogen Road Map



Development of Smart Community Technology by Utilization of Cogeneration System with Hydrogen Gas Turbine

Kawasaki Hydrogen Road Map

The first attempt in the world to supply electric power and heat generated from hydrogen gas turbine to an actual urban area

Kawasaki Hydrogen Road Map

Gas Turbine CHP Plant using 100% Hydrogen as a fuel

Partners:

- Obayashi
- Kawasaki
- Kobe City
- **KEPCO**
- lwatani
- Osaka University

Supported by NEDO

Kawasaki will pursue "manufacturing that makes the Earth smile."

"Global Kawasaki"

