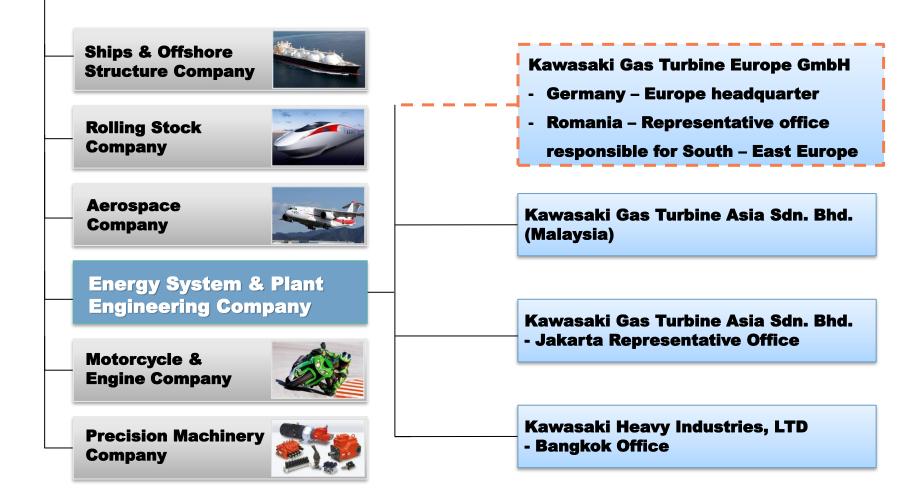
Two Specialists

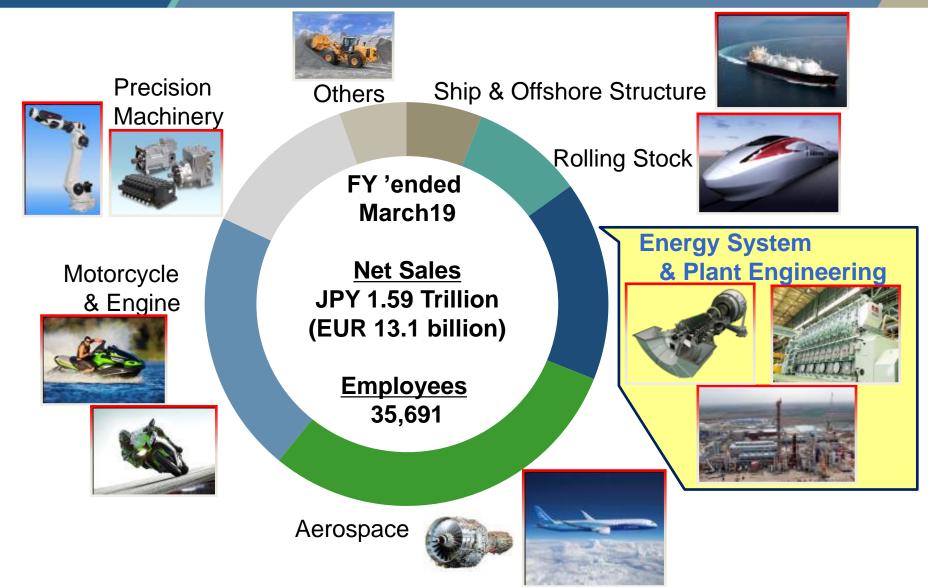
No Compromise

KAWASAKI Gas Turbine Europe GmbH

CHP and Combined Cycle-Plants


General Company Presentation

© KAWASAKI Gas Turbine Europe GmbH. All Rights reserved.


Kawasaki Heavy Industries – Sections

Kawasaki Heavy Industries, Ltd.

Kawasak

Kawasaki Heavy Industries – Product Segment Overview

Planning of cogeneration power plants

Potential clients of cogeneration

Industry

Pulp and paper

Medicines and cosmetics

Refinery / Chemistry

Food and beverages industry

Automotive and tyres

Ceramics



Planning of cogeneration plants

Potential clients of cogeneration

> District Heating

Services with own small cogeneration unit:

Universitary campus

Hospitals

Hotels

Airports

Kawasaki Products & Services

Kawasaki Gas Turbine Europe · Kawasaki Heavy Industries

Products		Services					
Gas Turbines	Gas Engines	Engineering	Implementation	Maintenance			
M1A-17D 1,816 kWel η = 28.1 %	KG12 5,200 kWel η = 49.0 %	Concept Engin ee ring	Project Planning	Spare Parts Comsumables			
M5A-01 D 4,720 kWel η = 32.6 %	KC12-V 5,200 kWel η = 49.5 %	Detailed Engineering	Customized Packaging	Full Maintenance			
M7A-03D 7,810 kWel η = 33.6 %	<mark>KC18</mark> 7,800 kWel η = 49.0 %		Erection Commissioning	Remote Monitoring			
L20A-01D 18,500 kWel η = 34.3 %	KG13-V 7,800 kWel η = 49.5 %	C)ther Services	6			
L30A-01D 34,300 kWel η = 40.3 %		Low-interest loans (i.e. governmental loans)					

6

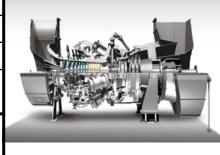
Kawasaki

Kawasaki Gas Turbine Engine Models

M1A-17D

1,816
28.1
5
522
< 9 50

M7A-03D


Power Output [kWe]	7,810
Ele. Efficiency [%]	33.6
Sat. steam 8 barg [t/h]	16.4
Exhaust Gas Temperature [°C]	523
NO _x @ O ₂ = 15% [ppm]	< 9
CO @ O ₂ = 15% [ppm]	10

Power Output [kWe]	4,720
Ele. Efficiency [%]	32.6
Sat. steam 8 barg [t/h]	11
Exhaust Gas Temperature [°C]	511
NO _x @ O ₂ = 15% [ppm] CO @ O ₂ = 15% [ppm]	15 15

M5A-01D

Power Output [kWe]	18,500
Ele. Efficiency [%]	34.3
Sat. steam 8 barg [t/h]	11
Exhaust Gas Temperature [°C]	542
NO _x @ O ₂ = 15% [ppm] CO @ O ₂ = 15% [ppm]	15 25

L30A

Power Output [kWe]	34,380
Ele. Efficiency [%]	40.3
Sat. steam 8 barg [t/h]	55
Exhaust Gas Temperature [°C]	502
NO _x @ O ₂ = 15% [ppm] CO @ O ₂ = 15% [ppm]	15 / 9 25

7

Kawasaki Gas Turbine (KHI) – 100 MW CCPP (combined cycle power plant)

Kawasaki Gas Turbine (KHI) – 100 MW CCPP (combined cycle power plant) - performances

Combined Cycle Performance Data (Reference)

	1 on 1	2 on 1	2 on 1 (Reheat)
CC Electric Output [MWe]	44.7	89.9	101.5
CC Heat Rate [kJ/kW-hr]	6,650	6,620	6,520
CC Electrical Efficiency [%]	54.1	54.4	55.2
Number of Gas Turbines	1	2	2
Bottoming Cycle Type	2PNRH	2PNRH	3PRH


Condition

Inlet Air Temperature : 15 deg-C Atmospheric Pressure : 101.3 kPa Fuel Type : Natural Gas (100% CH,) LHV of Fuel : 35.9 MJ/Nm³ 2PNRH : Two Pressure Non-reheat 3PRH : Three Pressure Reheat

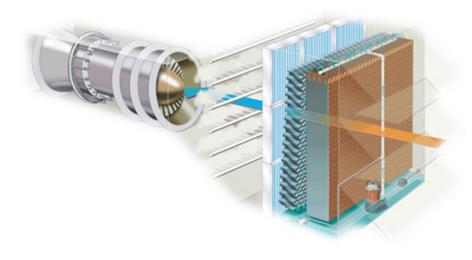
9

Kawasaki Gas Engine Models

KG – 18 – V

Power Output [kWe]	7,800		
Ele. Efficiency [%]	49.5		
Exhaust Heat [kWth]	4,000		
Exhaust Gas Temperature [°C]	320		
NOx @ O ₂ = 0% [ppm] CO @ O ₂ = 0% [ppm]	200 50		
Methane number	> 65		

KG – 12 – V

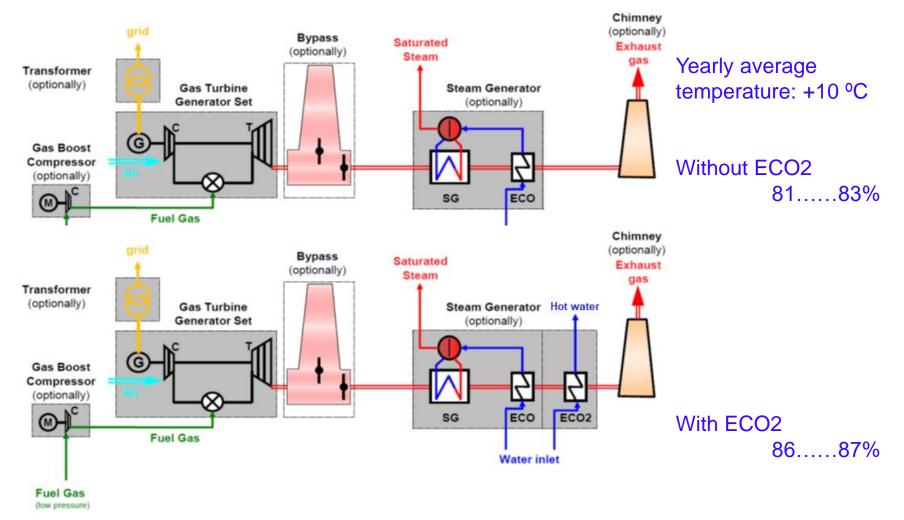

Power Output [kWe]	5,200		
Ele. Efficiency [%]	49.5		
Exhaust Heat [kWth]	2,700		
Exhaust Gas Temperature [°C]	320		
NOx @ O ₂ = 0% [ppm] CO @ O ₂ = 0% [ppm]	15 15		
Methane number	> 65		

Energy efficiency and cogeneration solution

Energy efficiency solutions into Kawasaki cogeneration solutions

- 1. Electricity production growth at the level of gas turbines using
 - Evaporative coolers: the combustion air entering the filter house will pass through a wetted media
 - Useful in dry environments; Useful for a limited period of time: $t_{amb} > 15 \text{ }^{\circ}\text{C}$;

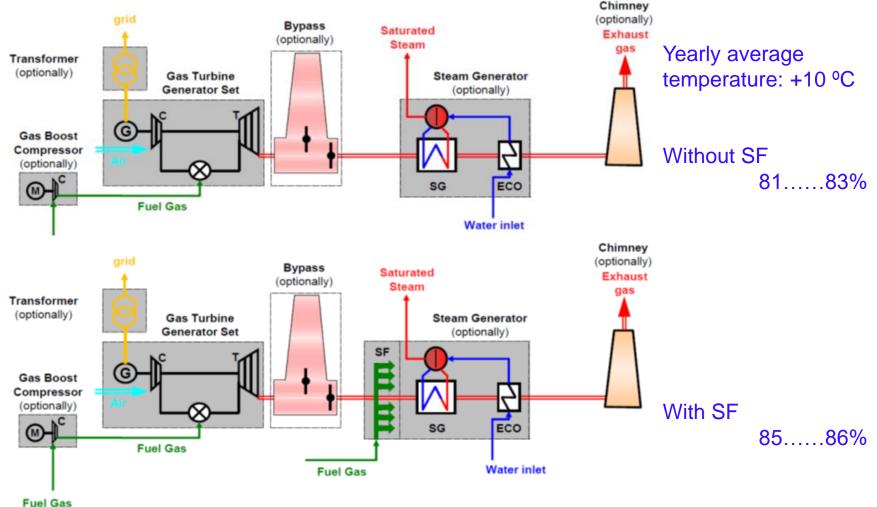
GPB 80D – 7.8 MW in ISO cond.


for 3365 hours / year and 240 m a.s.l.: Electricity production

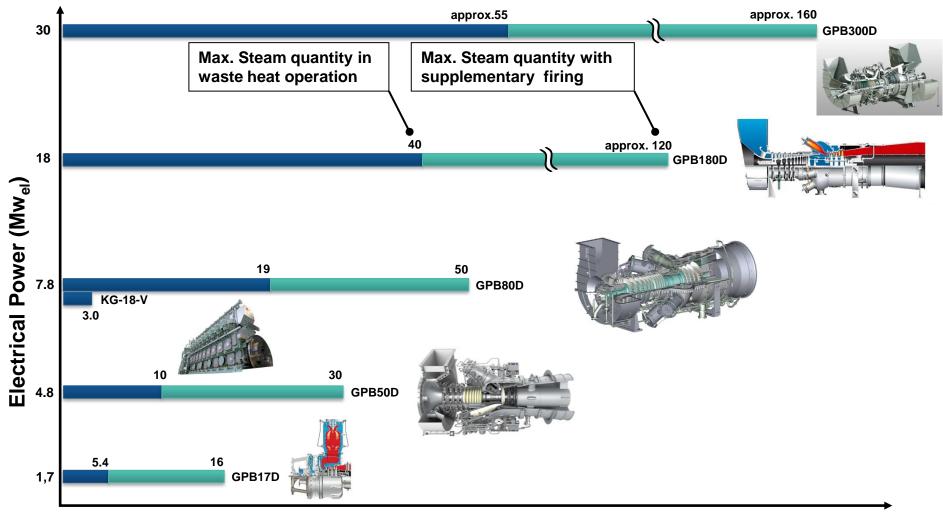
with Evap. Cooler: 24,268 MWh without Evap. Cooler: 22,341 MWh

Electrical efficiency with Evap. Cooler: 32.63 % without Evap. Cooler: 31.65 %

Energy efficiency and cogeneration solution


2. Overall Efficiency increasing by using second economiser (ECO2)

🛛 🕊 Kawasaki

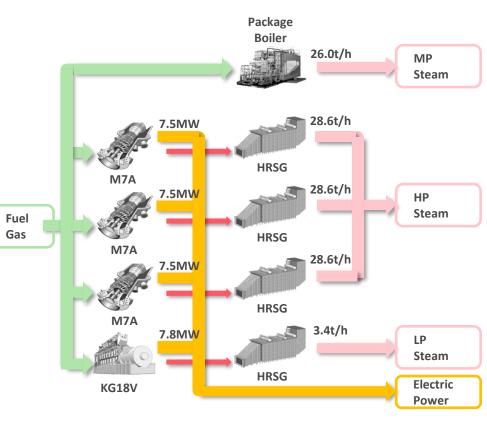

Energy efficiency and cogeneration solution

3. Overall Efficiency increasing by using supplementary firing (SF)

(low pressure)

Energy efficiency and Kawasaki cogeneration solutions

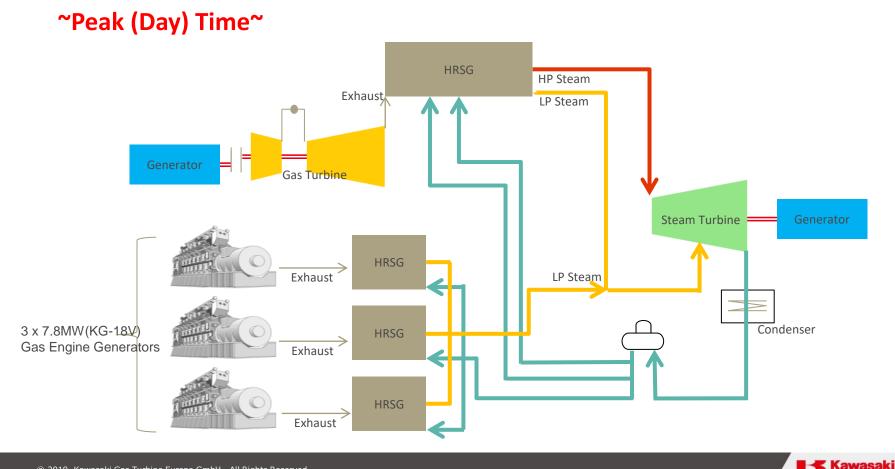
Steam Quantity (t/h)



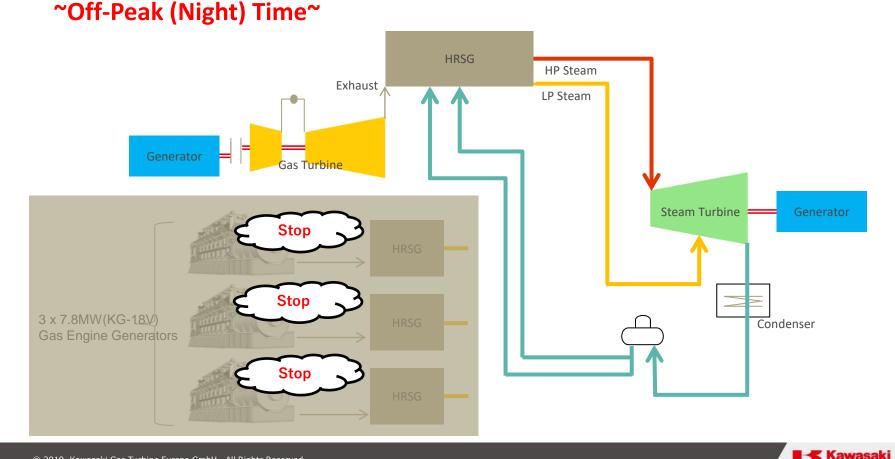
Hybrid CHP for Chemical Industries (JPN)

Example of installation GPB80 GT and KG-18 GGE, Japan

CHP Package	GPB80D + Gas Engine M7A(7.5MW) × 3 units KG-18-V(7.8MW) × 1 unit				
Output					



LP : Low Pressure MP : Medium Pressure


Hybrid CHP for Industrial Park (THA)

Optimal Configuration for load alteration (Peak/Off-peak) By Hybrid Combined Cycle (Gas Turbine & Gas Engines + Steam Turbine)

Hybrid CHP Reference for Industrial Park (THA)

Optimal Configuration for load alteration (Peak/Off-peak) By Hybrid Combined Cycle (Gas Turbine & Gas Engines + Steam Turbine)

Energy efficiency and Kawasaki cogeneration solutions

According with:

- Project type:
 - energy efficiency;
 - new cogeneration facility production;
- Electricity Demand and Thermal Demand;
- Type of Thermal Demand (heat, steam, hot gases, child water);
- Strategy of Business;
- Flexibility and Redundancy in operation;

Kawasaki products, services and solutions cover all cogeneration application with a size between 1.5 MWe and 100 MWe

Joetsu Green Power Project for Nihon Techno / J

Kawasak

110MW Nihon Techno Sodegaura Green Power (JPN)

Gas Engine Features

49.5% Electrical Efficiency - The World Best Performance

Achieved excellent electrical efficiency by optimized design of combustion chambers and individual cylinder control

Environmental Friendly

NOx emission : Less than 200 ppm (@O2 = 0%)

High Partial Load Performance and Wide Continuous Operating Range

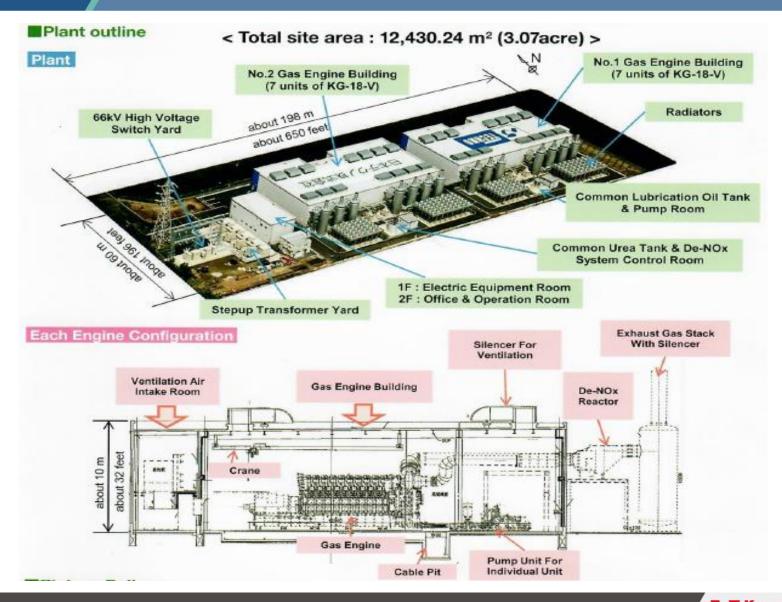
Operating range is 30% ~ 100% / Keep high efficiency at partial load

*suitable for peak operation

Quick Start Up

Within 10 minutes to 100% load from start order

*suitable for peak operation


Less Impact by Ambient Conditions

Stable output in hot climates / at high altitude

Construction Period: December 19, 2011 - August 15, 2012

Works	Oct./2011	Nov.	Dec.	Jan./2012	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.
Planning & Designing						-					
Civil & Architecture Work			-								
Machine Installation						-	_		-		
Pipework					-	-					
Electrical Work					-						
Commissioning											

110MW Nihon Techno Sodegaura Green Power (JPN)

How KGE Team Works

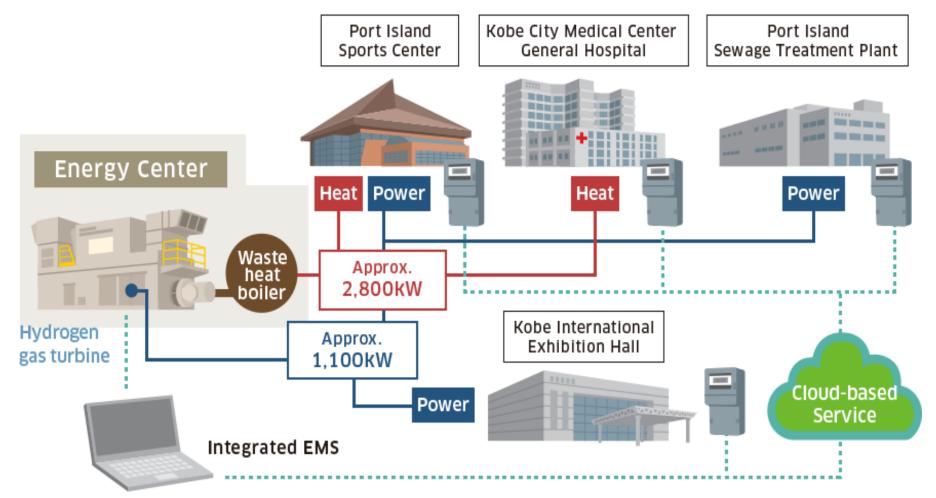
KGE provides individual consultancy from early beginning of CHP project
The customer will never walk alone;

- KGE provides the optimal solution according with the customer energy and economical requirements – *Maximum profit and flexibility in Operation*;
- KGE, for each project, simulates the performances of running machines according with customer energy consumption – *Guaranteed Performance*;
- KGE designs them solutions according with site conditions Customized Solution;
- KGE, together with them partners, can provide *Financial Solutions*;

How KGE Team Works

- KGE can offer extended scope of supply *Engineering, Procurement*;
- KGE provides project management, as well as detailed engineering Partnership with Customer;
- KGE provides all the activities for project implementation *Erection, Commissioning and Start-up*;
- KGE provides full maintenance for long term, spare parts and remote monitoring – Sustainable Cooperation with Our Customer is Warranted.

Kawasaki Hydrogen Road Map


Development of Smart Community Technology by Utilization of Cogeneration System with Hydrogen Gas Turbine

KOBE city

Kawasaki Hydrogen Road Map

The first attempt in the world to supply electric power and heat generated from hydrogen gas turbine to an actual urban area

Kawasaki

Kawasaki Hydrogen Road Map

Gas Turbine CHP Plant using 100% Hydrogen as a fuel

Power Generation: 1.7 MWe

- Obayashi
- Kawasaki
- Kobe City
- KEPCO
- Iwatani
- Osaka University

Supported by NEDO

Thank you for your attention!

Kawasaki will pursue "manufacturing that makes the Earth smile."

"Global Kawasaki"

M. Sc. Eng Cristian Athanasovici Business Development Manager

