Two Specialists

No Compromise

KAWASAKI Gas Turbine Europe GmbH

CHP and Combined Cycle-Plants

General Company Presentation

Agenda

1

Kawasaki Heavy Industries (KHI)

2

Kawasaki Gas Turbine Europe (KGE)

3

Kawasaki Products & Services

4

Developments for Hydrogen Gas Turbines @ KHI

Kawasaki Heavy Industries – Sections

Kawasaki Heavy Industries, Ltd.

Ships & Offshore Structure Company

Rolling Stock Company

Aerospace Company

Energy System & Plant Engineering Company

Motorcycle & Engine Company

Precision Machinery Company

Kawasaki Gas Turbine Europe GmbH

- Germany Europe headquarter
- Romania Representative office
 responsible for South East Europe

Kawasaki Gas Turbine Asia Sdn. Bhd. (Malaysia)

Kawasaki Gas Turbine Asia Sdn. Bhd.

- Jakarta Representative Office

Kawasaki Heavy Industries, LTD - Bangkok Office

Kawasaki Gas Turbine Europe (KGE) – History

1975 License Agreement with Deutz AG

- Deutz, Cologne starts the Sales and Service of the M1A Gas Turbine
- MWM Diesel & Gastechnik, Mannheim takes over the business from Deutz

1998 Establishment of KAWASAKI Gas Turbine Europe GmbH

- Headquarter for the entire European Market
- Sales, Packaging and Service of Gas Turbine Generator Sets
- 10 Employees

2003 Expansion of Production Facilities

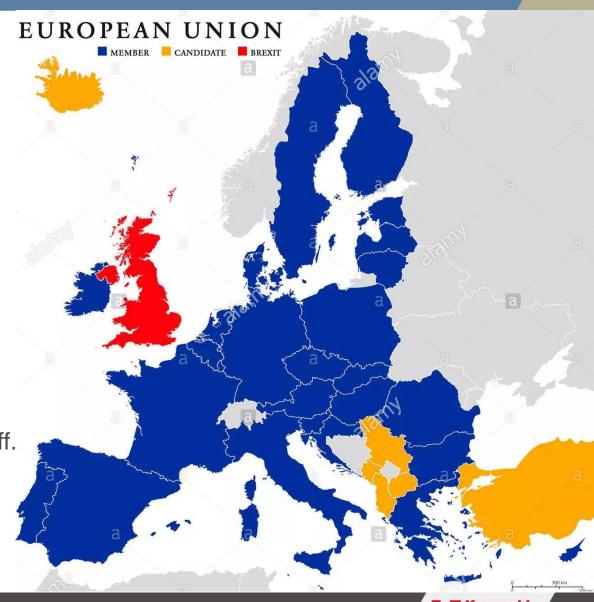
- Relocation to Bad Homburg (close to Frankfurt City)
- Establishment of the Production Site and Service Centre Europe
- Start of in-house packaging of GPB17D
- 25 Employees

2013 Introduction of the Gas Engines into the product portfolio

- Start of Promotion and Sales of KG-12/V and KG-18/V
- 40 Employees

2018 Establishment of Romanian Office in Bucharest

- Promotion & Sales Activities started, responsible for South-East Europe
- Currently: 67 Employees



European Union context for KGE business

- EU-ETS reduction of CO₂ emissions 2021 - 2030;
- 2015 Paris Agreement greenhouses gas emissions reduction 2020 – 2030, limit global warming to no more than 2 deg. C;
- EU Directive 27/2012 Energy Efficiency
- Decision 1442/2017 En. Eff. levels and Emiss. Levels associated with BAT;

Kawasaki's challenge

KGE's Take

Working as one for the good of the planet!

Highly Focusing on Environmental Protection and Energy Savings

- Reduction of emissions
 Global warming gas CO₂
 Harmful gas NO_x, SO_x
- Energy Saving

Renewable energy

Distributed Generator System

- Provide highly efficient energy use
- Flexible and reliable to complement unstable renewable energy

Potential clients of cogeneration

> Industry

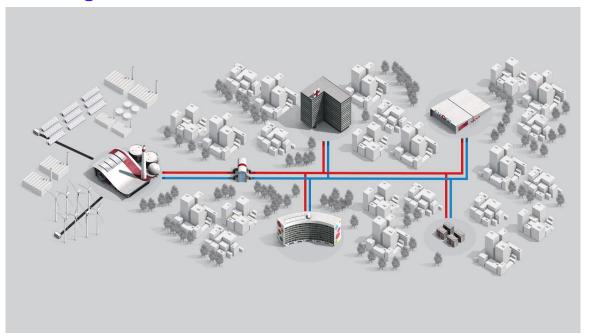
Pulp and paper

Medicines and cosmetics

Refinery / Chemistry

Food and beverages industry

Automotive and tyres



Ceramics

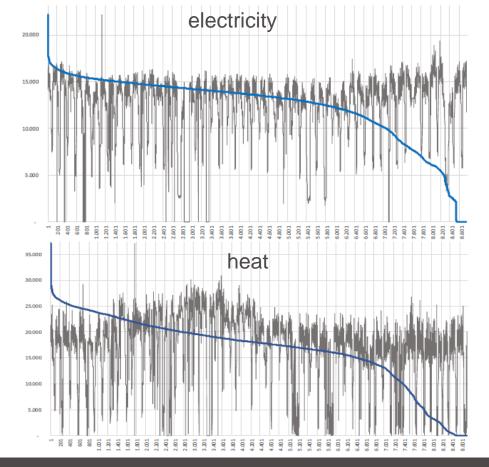
Potential clients of cogeneration

District Heating

Services with own small cogeneration unit:

Universitary campus

Hospitals


Hotels

Airports

Main steps to size a cogeneration unit

- Calculating heat and electricity demand
- > Analysis of consumption profile and simultaneity electricity and heat consumption

Main steps to size a cogeneration unit

- Sizing criteria
 - Heat demand: heat demand is main criteria and electricity is a result
 - Electricity demand: electricity is main criteria and heat is a result
- Cogeneration technology
- Sizing of cogeneration unit
- Investment (CAPEX)
- Technic and economic calculation
 - Yearly operation data
 - Criteria of high efficiency cogeneration CE Directive no. 27/2012
 - OPEX
- Financing solution
 - Own funds and / or loans
 - BOOT
 - EU funds POIM / 6.4 (extended till 31 December 2020), Mechanisms 10C (Derogation) and 10 D (Modernization unit)
 - Grants

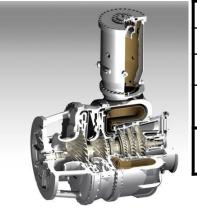
Kawasaki Products & Services

Kawasaki Gas Turbine Europe · Kawasaki Heavy Industries

Products

Services

Gas Turbines	Gas Engines	Engineering	Implementation	Maintenance			
M1A-17D 1,816 kWel η = 28.1 %	//C12 5,200 kWel η = 49.0 %	Concept Engineering	Project Planning	Spare Parts Comsumables			
M-5A-01 D 4,720 kWel η = 32.6 %	(C12-V) 5,200 kWel η = 49.5 %	Detailed Engineering	Customized Packaging	Full Maintenance			
M7/A-03 D 7,810 kWel η = 33.6 %	/(C13 7,800 kWel η = 49.0 %		Erection Commissioning	Remote Monitoring			
L20A-01D 18,500 kWel η = 34.3 %	KC13-V 7,800 kWel η = 49.5 %	Other Services					
L30A-01D		Low-interest loans					


(i.e. governmental loans)

34,300 kWel

n = 40.3 %

Kawasaki Gas Turbine Engine Models

M1A-17D

	M1A-17D
Power Output[kWe]	1,816
Ele. Efficiency[%]	28.1
Exhaust Gas Temperature[degC]	522
NOx [ppm] CO [ppm]	< 9 50

M7A-03D

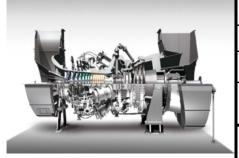
	M7A-03D
Power Output[kWe]	7,810
Ele. Efficiency[%]	33.6
Exhaust Gas Temperature[degC]	523
NOx [ppm] CO [ppm]	< 9 10

M5A-01D

4,720

15

M5A-01D


Ele. Efficiency[%] 32.6 **Exhaust Gas** 511 Temperature[degC] NOx [ppm] 15 CO [ppm]

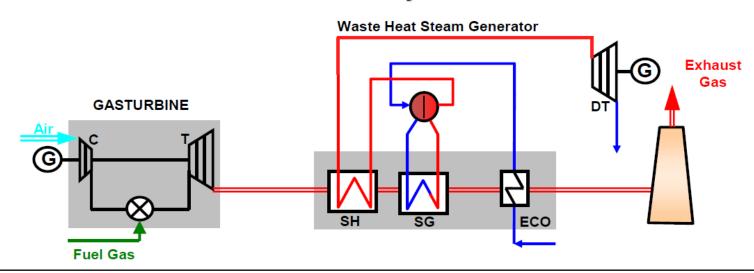
Power Output[kWe]

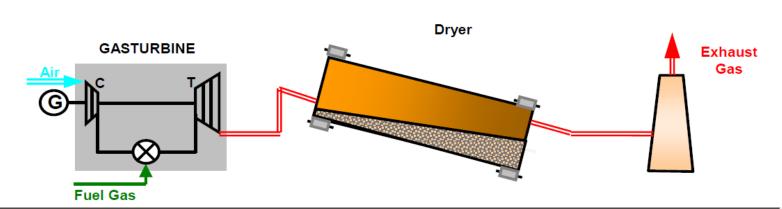
L30A

	L20A
Power Output[kWe]	18,500
Ele. Efficiency[%]	34.3
Exhaust Gas Temperature[degC]	542
NOx [ppm] CO [ppm]	15 25

	L30A
Power Output[kWe]	34,380
Ele. Efficiency[%]	40.3
Exhaust Gas Temperature[degC]	502
NOx [ppm] CO [ppm]	15 / 9 25

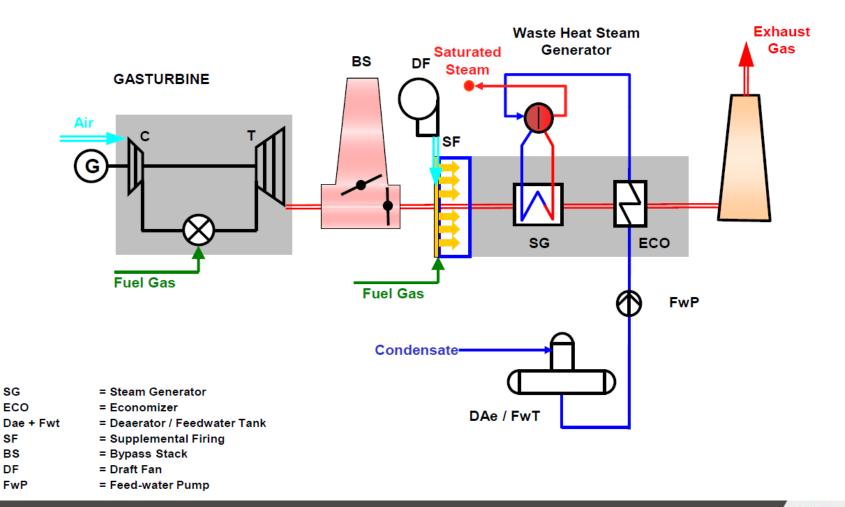
Gas Turbine Generator Sets – Main Features


Main Features

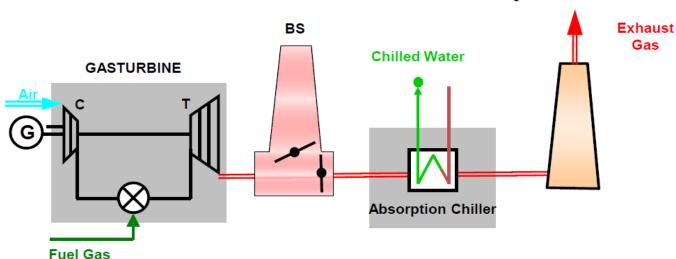

- ·High Exhaust Temperature >500°C
- ·Less amount of Low Temperature Heat
- ·Low Level Sound Enclosures
- Low Exhaust Gas Emissions
- ·Less Interfaces
- Long Maintenance Intervals

Possible Applications in Cogeneration – 1/3

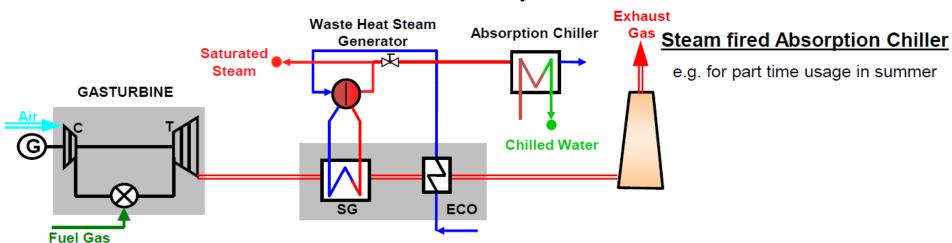
Combined Cycle Power Production



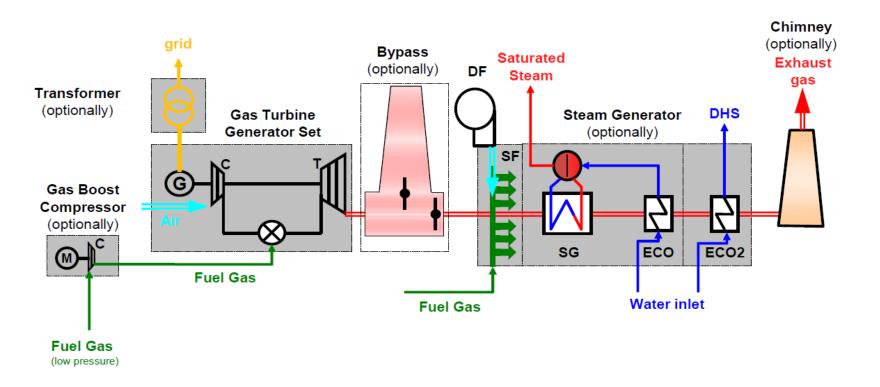
Direct Exhaust Gas Utilization


Possible Applications in Cogeneration - 2/3

Gasturbine with WHSG, SF, Bypass Stack (BS) and Draft Fan (DF)



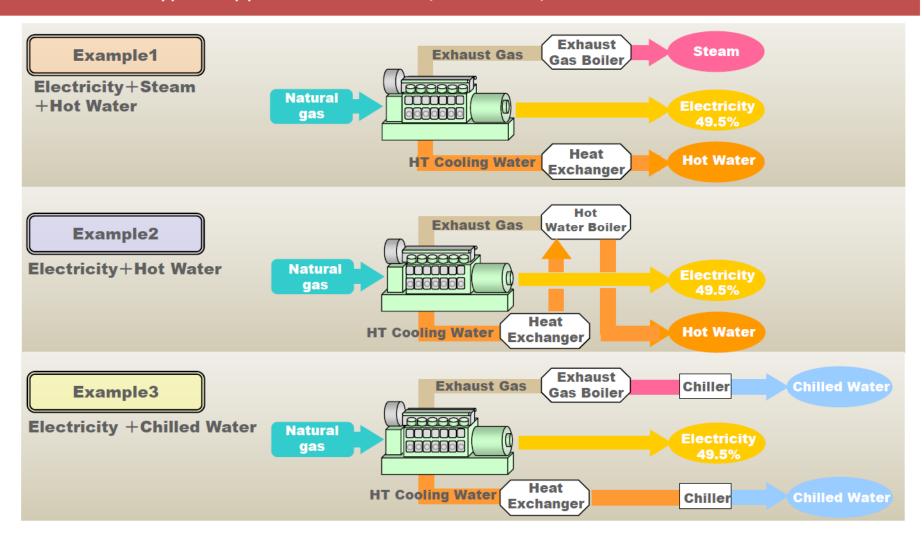
Possible Applications in Cogeneration – 3/3

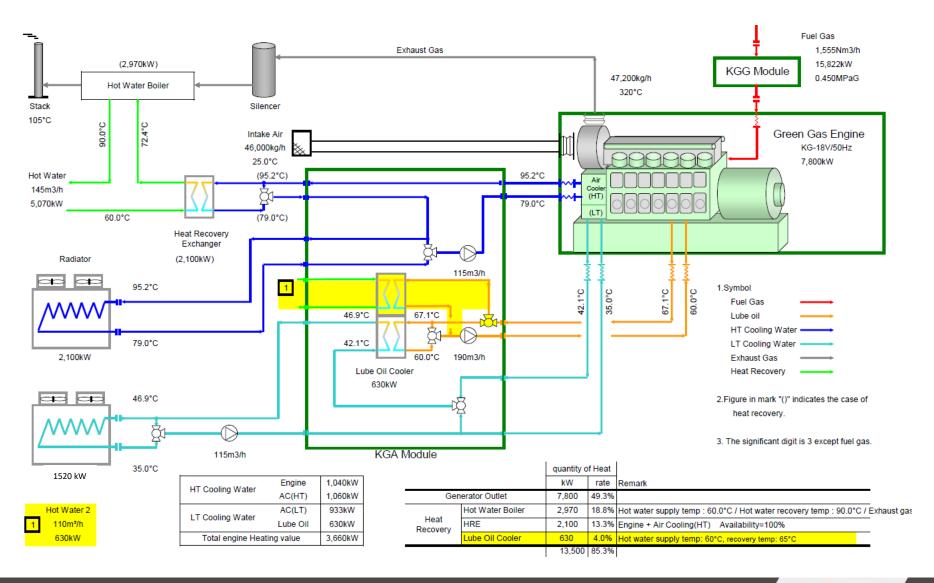

Direct Fired Absorption Chiller

Steam Fired Absorption Chiller

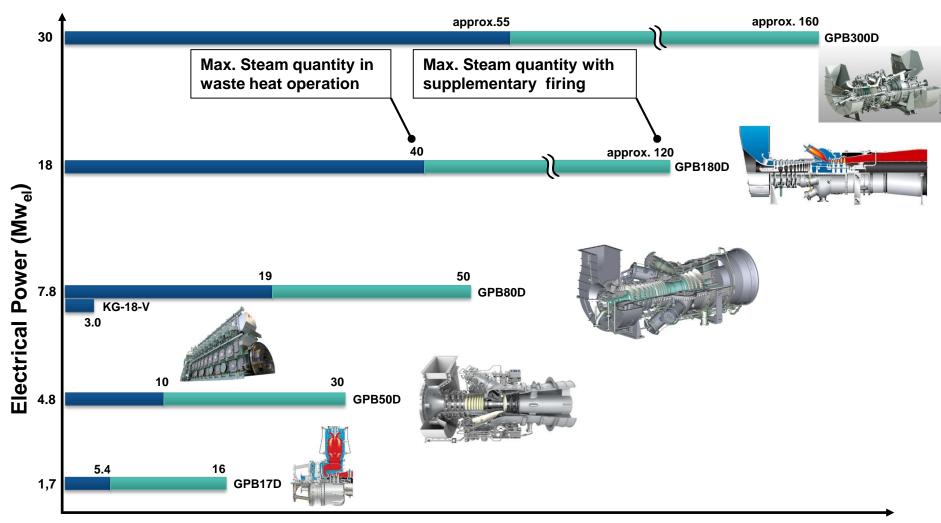
Kawasaki Gas Turbine Europe (KGE) – Scope of Supply

Gas Engine Generator Sets – Main Features


Main Features


- ·Highest Electrical Efficiency 49.5%
- Excellent Partial Load Performance
- Wide Continuous Operating Range
- Less Impact by Ambient Conditions
- Quick Start-Up(In 10 minutes to 100% Load)

Possible Applications in Cogeneration of KG 18V, KG 12V


Typical Application for Steam/Hot Water/Chilled Water Demand

Gas Engine integration - sample

Performances in CHP

Steam Quantity (t/h)

GPB17 example of installation /P Kelco Großenbrode (D)

Project background

Supplementation to existing conventional boilers with Steam turbine

Challenges

- Maritime climate
- First GPB17 with 9 ppm NOx-System in Europe
- Low sound level of 65dB(A) because of tourist region
- Extended scope of supply:
 - gas boost compressor
 - Re-cooling system

Project key data

Commissioning: September 2014

Output (electrical): 1,735 kW at 10° C

Efficiency (Electrical, terminal, LHV): 26.7 %

GPB80 example of installation / AGFA (B)

Project background

 Supplementation of steam generation by one GTGS, boilers with supplementary firing

Challenges

- Limited space
- Low noise level for all aggregates
- Combustion air cooler
- Electrical cabinets separate
- Extended scope of supply:
 - Gas Boost Compressor
 - Water tube boiler with ECO2
 - Supplementary firing up to 40 t/h
 - Stainless steel chimney

Project key data

Commissioning: 08/2011

Output (electrical, at 11°C): 7,480 kW

Efficiency(Electrical, terminal, LHV):
34.4 %

GPB80 + GPB180 example of installation EDP (P)

Project background

Build up new and full flexible power plant based on Kawasaki GPB80 and GPB180 each with Bypass Stack, Supplementary Firing and Draft Fan.

Challenges

- Maritime climate
- Adiabatic inlet cooling
- First GPB180 GTGS in Europe

Project key data

Commissioning: December 2009

Output (electrical): 7,290 kW at 15° C

18,000 kW at 15° C

Efficiency (Electrical, terminal, LHV): GPB80: 32.7 %

GPB180: 32.8 %

Joetsu Green Power Project for Nihon Techno / J

110MW Nihon Techno Sodegaura Green Power (JPN)

Gas Engine Features

49.5% Electrical Efficiency - The World Best Performance

Achieved excellent electrical efficiency by optimized design of combustion chambers and individual cylinder control

Environmental Friendly

NOx emission: Less than 200 ppm ($@O_2 = 0\%$)

High Partial Load Performance and Wide Continuous Operating Range

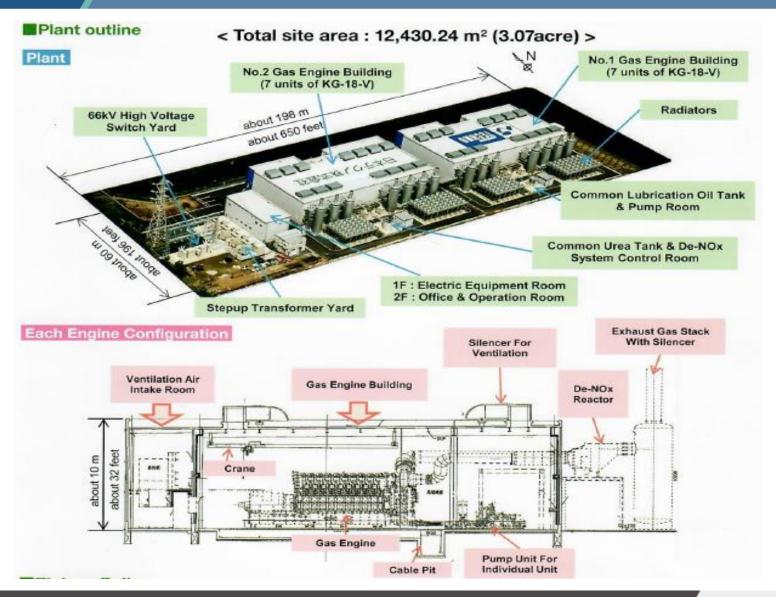
Operating range is 30% ~ 100% / Keep high efficiency at partial load

*suitable for peak operation

Quick Start Up

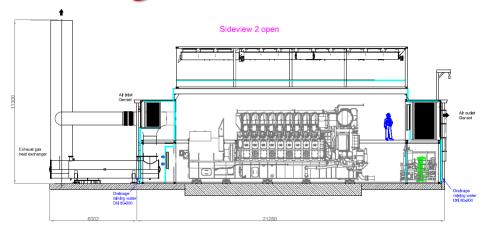
Within 10 minutes to 100% load from start order

*suitable for peak operation


Less Impact by Ambient Conditions

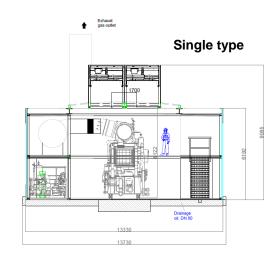
Stable output in hot climates / at high altitude

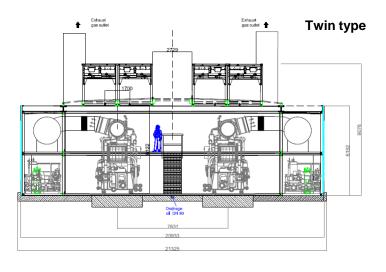
Construction Period: December 19, 2011 - August 15, 2012


Works	Oct./2011	Nov.	Dec.	Jan./2012	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.
Planning & Designing											
Civil & Architecture Work			-							****	
Machine Installation											
Pipewark					_	-			_	_	
Electrical Work					_	-					
Commissioning											

110MW Nihon Techno Sodegaura Green Power (JPN)

Gas Engine – Container Stack Solution

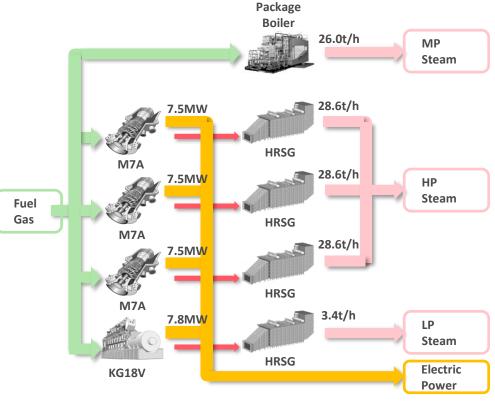

Under Development



Easy installation

Less Civil work

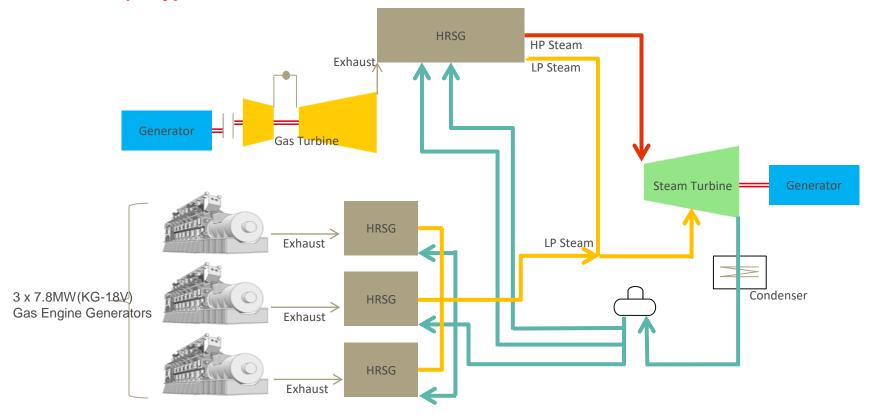
Shorter site work



Hybrid CHP for Chemical Industries (JPN)

Example of installation GPB80 GT and KG-18 GGE, Japan

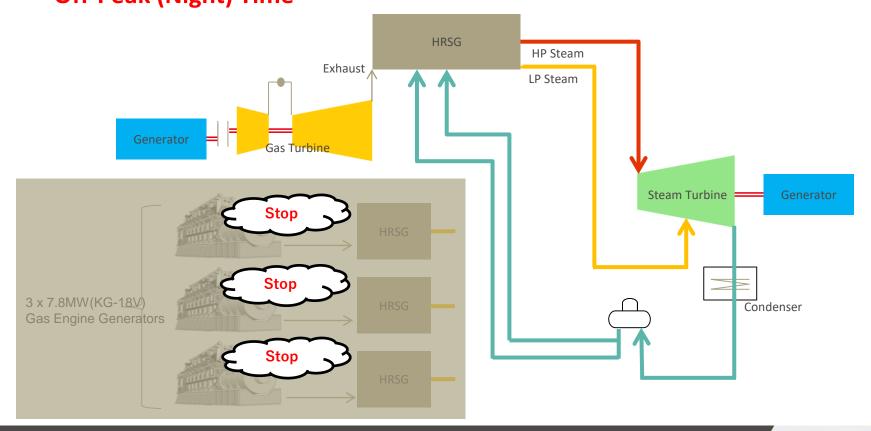
CHP Package	GPB80D +Gas Engine
Output	M7A(7.5MW) x 3 units KG-18-V(7.8MW) x 1 unit 26t/h Package Boiler



LP : Low Pressure MP : Medium Pressure

Hybrid CHP for Industrial Park (THA)

Optimal Configuration for load alteration (Peak/Off-peak)
By Hybrid Combined Cycle (Gas Turbine & Gas Engines + Steam Turbine)


~Peak (Day) Time~

Hybrid CHP Reference for Industrial Park (THA)

Optimal Configuration for load alteration (Peak/Off-peak)
By Hybrid Combined Cycle (Gas Turbine & Gas Engines + Steam Turbine)

~Off-Peak (Night) Time~

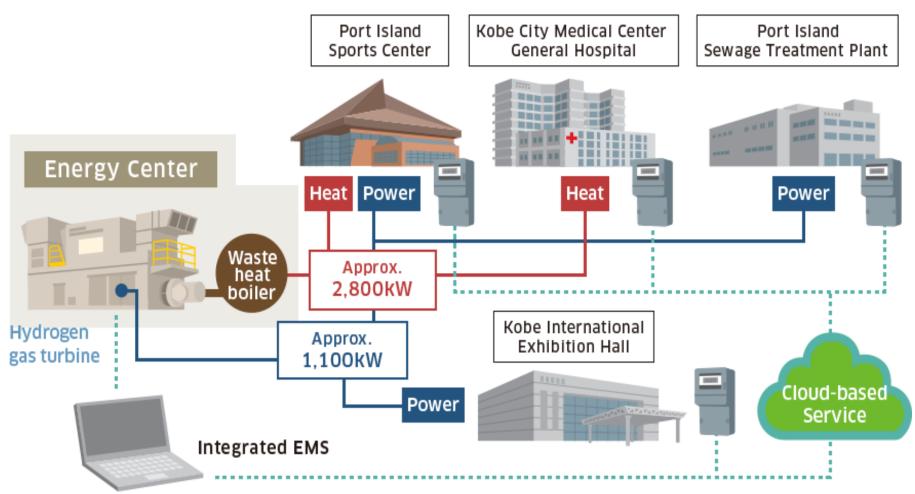
How KGE Team Works

- KGE provides individual consultancy from early beginning of CHP project
 The customer will never walk alone;
- KGE provides the optimal solution according with the customer energy and economical requirements – *Maximum profit and flexibility in Operation*;
- KGE, for each project, simulates the performances of running machines according with customer energy consumption Guaranteed Performance;
- KGE designs them solutions according with site conditions Customized Solution;
- KGE, together with them partners, can provide Financial Solutions;

How KGE Team Works

- KGE can offer extended scope of supply Engineering, Procurement,
- KGE provides project management, as well as detailed engineering Partnership with Customer;
- KGE provides all the activities for project implementation *Erection*, *Commissioning and Start-up*;
- KGE provides full maintenance for long term, spare parts and remote monitoring – Sustainable Cooperation with Our Customer is Warranted.

Kawasaki Hydrogen Road Map



Development of Smart Community Technology by Utilization of Cogeneration System with Hydrogen Gas Turbine

Kawasaki Hydrogen Road Map

The first attempt in the world to supply electric power and heat generated from hydrogen gas turbine to an actual urban area

Kawasaki Hydrogen Road Map

Gas Turbine CHP Plant using 100% Hydrogen as a fuel

Partners:

- Obayashi
- Kawasaki
- Kobe City
- **KEPCO**
- lwatani
- Osaka University

Supported by NEDO

Kawasaki will pursue "manufacturing that makes the Earth smile."

"Global Kawasaki"

